GABA is the principal neurotransmitter of the circadian system.

Neurosci Lett

Department of Psychiatry, University of Pittsburgh, PA 15261.

Published: February 1993

The circadian timing system imposes a temporal organization on physiological processes and behavior. The two major nuclei of the system are the intergeniculate leaflet (IGL) of the lateral geniculate complex and the suprachiasmatic nucleus (SCN) of the hypothalamus. In this study, we demonstrate that neurons of both nuclei colocalize GABA with peptides. In the IGL, GABA is colocalized with neuropeptide Y in neurons projecting to the SCN and with enkephalin in neurons projecting to the contralateral IGL. In the SCN, GABA is colocalized with vasopressin and vasoactive intestinal polypeptide. All, or nearly all, of the neurons in the IGL and SCN are GABA-producing. Thus, GABA should be considered the principal neurotransmitter of the circadian system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0304-3940(93)90120-aDOI Listing

Publication Analysis

Top Keywords

principal neurotransmitter
8
neurotransmitter circadian
8
circadian system
8
gaba colocalized
8
neurons projecting
8
igl scn
8
gaba
5
gaba principal
4
system
4
system circadian
4

Similar Publications

The substantia nigra pars compacta (SNc), one of the main dopaminergic nuclei of the brain, exerts a regulatory function on the basal ganglia circuitry via the nigro-striatal pathway but its possible dopaminergic innervation of the thalamus has been only investigated in non-human primates. The impossibility of tract-tracing studies in humans has boosted advanced MRI techniques and multi-shell high-angular resolution diffusion MRI (MS-HARDI) has promised to shed more light on the structural connectivity of subcortical structures. Here, we estimated the possible dopaminergic innervation of the human thalamus via an MS-HARDI tractography of the SNc in healthy human young adults.

View Article and Find Full Text PDF

Cognitive impairment is considered to be one of the key features of Parkinson's disease (PD), ultimately resulting in PD-related dementia in approximately 80% of patients over the course of the disease. Several distinct cognitive syndromes of PD have been suggested, driven by different neurotransmitter deficiencies and thus requiring different treatment regimes. In this study, we aimed to identify characteristic brain covariance patterns that reveal how cholinergic denervation is related to PD and to cognitive impairment, focusing on four domains, including attention, executive functioning, memory, and visuospatial cognition.

View Article and Find Full Text PDF

Effects of walnut kernel pellicle on the composition and properties of enzymatic hydrolysates of walnut meal by peptidomics and bioinformatics.

J Food Sci

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China.

The purpose of this article is to investigate the effects of walnut (Juglans regia L.) kernel pellicle on the composition and properties of enzymatic hydrolysis products of walnut meal using peptidomics and bioinformatics. In this study, a total of 3423 peptide sequences were identified in peeled walnut protein hydrolysates (PWPH) and unpeeled walnut protein hydrolysates (UWPH).

View Article and Find Full Text PDF

In situ biosensing for cell viability and drug evaluation in 3D extracellular matrix cultures: Applications in cytoprotection of oxidative stress injury.

Talanta

January 2025

Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China. Electronic address:

The rise of extracellular matrix (ECM)-supported three-dimensional (3D) cell culture systems which bridge the gap between in vitro culture and in vivo living tissue for pharmacological models has increased the need for simple and robust cell viability assays. This study presents the development of an effective biosensing assay for in situ monitoring of the catecholamine neurotransmitter exocytosis levels for cell viability assessment within complicated cell-encapsulated hydrogel milieu. Firstly, the biosensing assay demonstrated the distinction among four pheochromocytoma (PC12) cell lines with varying degrees of differentiation and the discrepancy in cellular neurosecretory capacity between two-dimensional (2D) monolayer and 3D agarose hydrogel culture conditions, accompanied by morphological distinctions.

View Article and Find Full Text PDF

Background: Huntington disease (HD) is a progressive neurodegenerative disease that causes psychiatric and neurological symptoms, including involuntary and irregular muscle movements (chorea). Chorea can disrupt activities of daily living, pose safety issues, and may lead to social withdrawal. The vesicular monoamine transporter 2 inhibitors tetrabenazine, deutetrabenazine, and valbenazine are approved treatments that can reduce chorea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!