The effects of glutamate on membrane potential and discharge rate of suprachiasmatic neurons.

Brain Res

Department of Physiology, Leiden, The Netherlands.

Published: February 1993

The suprachiasmatic nucleus (SCN) is a major pacemaker for circadian rhythms in mammals. Photic entrainment of the circadian pacemaker is mediated by the retinohypothalamic tract (RHT). Most likely, excitatory amino acids function as neurotransmitters in this pathway. We have now investigated the effect of glutamate on the membrane potential of cultured SCN cells of the rat with the aid of the patch clamp technique. It was found that 1 mM glutamate depolarizes the cells by about +44 mV. In spontaneously active neurons, the glutamate induced depolarization caused either an increase in discharge or a depolarization block. We then investigated the effect of 1 mM glutamate on SCN discharge in the acutely prepared hypothalamic slice of the hamster. In most cells glutamate induced an increase in discharge whilst in a few cells discharge was suppressed. Both series of experiments indicate that glutamate in the used dosage was effective and its effect reversible. The data are discussed with respect to the failure of 1 mM glutamate injections to mimic the effect of light on the circadian activity rhythm of the hamster.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-8993(93)91249-rDOI Listing

Publication Analysis

Top Keywords

glutamate membrane
8
membrane potential
8
investigated glutamate
8
glutamate induced
8
increase discharge
8
glutamate
7
discharge
5
effects glutamate
4
potential discharge
4
discharge rate
4

Similar Publications

Prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) has improved localization of prostate cancer (PC) lesions in biochemical recurrence (BCR) for salvage radiotherapy (SRT). We conducted a retrospective review of patients undergoing F-rhPSMA-7 or F-flotufolastat (F-rhPSMA-7.3)-PET-guided SRT compared with conventional-SRT (C-SRT) without PET.

View Article and Find Full Text PDF

This investigation represents a pioneering effort to examine the therapeutic effects of PCB specifically in the context of CFA-induced mice, as well as to elucidate the underlying mechanisms that facilitate such effects. Our study utilized advanced methodologies, namely high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS)-based metabolomics, alongside comprehensive multivariate data analysis, to identify a distinctive metabolic profile associated with acute inflammation. Through our analyses, we discovered that several potential metabolites were significantly implicated in a variety of critical metabolic pathways.

View Article and Find Full Text PDF

Non-canonical Roles of Complement in the CNS: From Synaptic Organizer to Presynaptic Modulator of Glutamate Transmission.

Curr Neuropharmacol

January 2025

Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.

The central nervous system (CNS) is not an immune-privileged compartment, but it is intimately intertwined with the immune system. Among the components shared by the two compartments is the complement, a main constituent of innate immunity, which is also produced centrally and controls the development and organization of synaptic connections. Complement is considered a doubled-faced system that, besides controlling the physiological development of the central network, also subserves synaptic engulfment pivotal to the progression of neurodegenerative diseases.

View Article and Find Full Text PDF

Hot shape transformation: the role of PSar dehydration in stomatocyte morphogenesis.

Beilstein J Org Chem

January 2025

Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.

Polysarcosine emerges as a promising alternative to polyethylene glycol (PEG) in biomedical applications, boasting advantages in biocompatibility and degradability. While the self-assembly behavior of block copolymers containing polysarcosine-containing polymers has been reported, their potential for shape transformation remains largely untapped, limiting their versatility across various applications. In this study, we present a comprehensive methodology for synthesizing, self-assembling, and transforming polysarcosine-poly(benzyl glutamate) block copolymers, resulting in the formation of bowl-shaped vesicles, disks, and stomatocytes.

View Article and Find Full Text PDF

Positron-emission tomography (PET) offers high sensitivity for cancer diagnosis. However, small-molecule-based probes often exhibit insufficient accumulation in tumor sites, while nanoparticle-based agents typically have limited delivery efficiency. To address this challenge, this study proposes a novel PET imaging probe, Ga-CBT-PSMA, designed for prostate cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!