Two autolysis-defective mutants (Lyt-1 and Lyt-2) of Staphylococcus aureus have been isolated by transposon Tn917-lacZ mutagenesis. The mutants exhibited normal growth rate, cell division, cell size, and adaptive responses to environmental changes. No autolytic activities were detected in a crude autolytic enzyme preparation from the Lyt- mutants. The rate of autolysis of whole cells and cell walls in the mutants were negligible, but mutant cell wall preparations were degraded by crude enzyme preparations from the wild-type strain. Zymographic analyses of enzyme extracts from the mutants showed a single autolytic enzyme band, compared with more than 10 autolytic enzyme bands from the parent strain. Analyses of intracellular and exoprotein fractions gave results similar to those in experiments with total-cell extracts. Southern blot analysis indicated the insertion of a single copy of the transposon into the chromosome of Lyt mutants. Isogenic Lyt mutants constructed by phage phi 11 transduction showed similar phenotypes. Because both Lyt- mutants had Tn917-lacZ inserted in the appropriate orientation, it was possible to determine gene activity under various conditions by measuring beta-galactosidase activity. The gene activity was found to be induced by low pH, low temperature, and high sucrose and high sodium chloride concentrations. From these data, we propose that the mutation lies in either a master regulatory gene or a structural gene which is responsible for the synthesis or processing of a majority of the autolytic enzyme bands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC193237PMC
http://dx.doi.org/10.1128/jb.175.5.1493-1499.1993DOI Listing

Publication Analysis

Top Keywords

autolytic enzyme
16
mutants
9
autolysis-defective mutants
8
staphylococcus aureus
8
tn917-lacz mutagenesis
8
lyt- mutants
8
enzyme bands
8
lyt mutants
8
gene activity
8
enzyme
6

Similar Publications

Signaling Transduction Network Elucidation of ACE 2 Regulating Autolysis by Using Integrative TMT Proteomics and Transcriptomics.

J Agric Food Chem

January 2025

National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.

This study aims to reveal the transduction signaling network that triggers sea cucumber () autolysis. The tandem mass tag (TMT) proteomics and transcriptomic techniques were used to analyze expression differences between inhibited and activated sea cucumber autolysis. Flow cytometry was used to identify apoptosis.

View Article and Find Full Text PDF

Improving the anti-autolytic ability of alkaline protease from Bacillus alcalophilus by a rationally combined strategy.

Enzyme Microb Technol

December 2024

Nanjing Vazyme Biotechnology Company Limited, C1-C2, Hong Feng Science and Technology Park, Nanjing 210046, PR China. Electronic address:

Detergent enzymes have been extensively developed as eco-friendly alternatives to harmful chemicals, with alkaline protease representing a significant portion of detergent enzyme sales. However, the self-cleavage function of alkaline protease impacts its activity and overall application. Therefore, a new rational combinatorial strategy is proposed based on self-molecular docking (Self-ZDOCK) and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Analysis of kallikrein-related peptidase 7 (KLK7) autolysis reveals novel protease and cytokine substrates.

Biol Chem

December 2024

Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, 94080, USA.

Kallikrein-related peptidase 7 (KLK7) is one of 15 members of the tissue kallikrein family and is primarily expressed in the skin epidermis. The activity of KLK7 is tightly regulated by multiple stages of maturation and reversible inhibition, similar to several other extracellular proteases. In this work, we used protease-specific inhibitors and active site variants to show that KLK7 undergoes autolysis at two separate sites in the 170 and 99 loops (chymotrypsinogen numbering), resulting in a loss of enzymatic activity.

View Article and Find Full Text PDF

Identification of a novel subtilisin-derived peptide, SC-(1-31), with cytotoxic activity.

Biochem Biophys Res Commun

January 2025

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Research Center for Food Safety, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan. Electronic address:

Subtilisins are alkaline serine proteases secreted by various species of Bacillus and can produce peptides by autolysis. A peptide from subtilisin NAT was found to disrupt the membrane of Streptococcus pneumoniae and to be cytotoxic only against tumor cell lines was found from subtilisin NAT. However, there has been little research on peptides derived from subtilisin Carlsberg, another famous subtilisin variant.

View Article and Find Full Text PDF

This study assessed postmortem proteolysis over 14 d in bovine Masseter (MS), Longissimus thoracis (LT), and Cutaneous trunci (CT) muscles. First, the metabolic, contractile, and connective tissue properties were characterized to establish their intrinsic differences. The MS contained the highest levels of oxidative markers and myosin heavy chain-I (MyHC-I), whereas the CT possessed the greatest glycolytic capacity, MyHC-IIx, and connective tissue proteins (P < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!