A method for isolation of rat renal microvessels and mRNA localization.

Am J Physiol

Department of Pediatrics, University of California, Los Angeles, School of Medicine 90024.

Published: September 1994

The objective of this study was to develop a technique to identify and dissect segments of the rat renal microcirculation and to apply reverse transcription (RT) to specific mRNAs with subsequent amplification of the cDNA by polymerase chain reaction (PCR) to evaluate gene expression. To circumvent the difficulty associated with visualizing specific microvessels, we intrarenally infused blue latex microparticles, 1-5 microns in diameter, with subsequent identification and microdissection of specific segments of the renal microvasculature under stereomicroscopy. To demonstrate its utility, we assessed expression of mRNAs encoding fibronectin and renin. As expected, mRNA encoding fibronectin was localized along the renal microcirculation, and mRNA encoding renin was primarily present in afferent arterioles and interlobular arteries. Identity of the amplified cDNA fragments was verified by sequencing. This perfusion-microdissection technique coupled to RT-PCR should be useful in the evaluation of gene expression along the renal microvasculature. It may also allow bridging of the gap between analysis of gene expression of rare mRNA species by in situ hybridization and physiology of the renal microcirculation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.1994.267.3.F497DOI Listing

Publication Analysis

Top Keywords

renal microcirculation
12
gene expression
12
rat renal
8
renal microvasculature
8
encoding fibronectin
8
mrna encoding
8
renal
6
method isolation
4
isolation rat
4
renal microvessels
4

Similar Publications

Aims: Childhood cancer is a risk factor for cardiovascular diseases in later life. Retinal examination allows to non-invasively observe the vasculature of an end-organ. We observe alterations in long-term childhood cancer survivors (CCS).

View Article and Find Full Text PDF

The aim of this study was to conduct experiments using laser speckle contrast imaging (LSCI) technology to investigate the effects of high salt diet on renal vascular reactivity in mice. LSCI is a technology for monitoring blood flow based on the laser speckle principle. It has been widely used to detect microcirculatory functions in tissues such as the skin and brain.

View Article and Find Full Text PDF

Systemic and Cardiac Microvascular Dysfunction in Hypertension.

Int J Mol Sci

December 2024

Dipartimento di Biotecnologie e Scienze della Vita, ASST Sette Laghi, Università degli Studi dell'Insubria, 21100 Varese, Italy.

Hypertension exerts a profound impact on the microcirculation, causing both structural and functional alterations that contribute to systemic and organ-specific vascular damage. The microcirculation, comprising arterioles, capillaries, and venules with diameters smaller than 20 μm, plays a fundamental role in oxygen delivery, nutrient exchange, and maintaining tissue homeostasis. In the context of hypertension, microvascular remodeling and rarefaction result in reduced vessel density and elasticity, increasing vascular resistance and driving end-organ damage.

View Article and Find Full Text PDF

Severe COVID-19 is associated with a generalized inflammatory response leading to peripheral and organ perfusion disorders. : This study aimed to evaluate the usefulness of peripheral and organ perfusion assessments in the prediction of prognosis and mortality in patients with severe COVID-19. : In the first 48 h of hospitalization, peripheral perfusion (saturation, Finger Infrared Thermography-FIT; Capillary Refill Time-CRT), and the color Doppler renal cortex perfusion (RCP) were estimated in a group of 102 severe COVID-19 patients.

View Article and Find Full Text PDF

Metabolic Syndrome, Kidney-Related Adiposity, and Kidney Microcirculation: Unraveling the Damage.

Biomedicines

November 2024

Division of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea.

Metabolic syndrome (MetS) is a cluster of interrelated risk factors, including insulin resistance, hypertension, dyslipidemia, and visceral adiposity, all of which contribute to kidney microvascular injury and the progression of chronic kidney disease (CKD). However, the specific impact of each component of MetS on kidney microcirculation remains unclear. Given the increasing prevalence of obesity, understanding how visceral fat-particularly fat surrounding the kidneys-affects kidney microcirculation is critical.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!