Recent investigations have shown that non-steroidal antiinflammatory drugs (NSAIDs) may exert an antinociceptive effect when administered at or within the central nervous system (CNS). This might be due to the engagement of CNS substrates that support the analgesic effects of opiates, including the periaqueductal gray matter (PAG) and the rostral ventromedial medulla (RVM). The off- and on-cells of the RVM have been proposed to inhibit and facilitate, respectively, nociceptive transmission. Accordingly, upon heating of a rat's tail the tail-flick (TF) reflex occurs only after off-cells have decreased, and on-cells have increased, their activity. In the present study, i.v. administration (200 and 400 mg/kg) or PAG microinjection (25, 50, 100 and 250 micrograms) of dipyrone (metamizol) to lightly anesthetized rats caused a dose-related retardation of the heat-elicited off-cell pause, on-cell discharge and corresponding TF. Neuronal response and TF retained their mutual time relationship but shifted pari passu toward longer latencies. This antinociception was apparent already 5 min post-injection and reached a maximum in 50-60 min for i.v. administration and 30-35 min for PAG microinjection. These results confirm other authors' findings of the direct antinociceptive action of NSAIDs upon PAG, and provide the first evidence for a plausible involvement of RVM off- and on-cells in such antinociceptive effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0304-3959(94)90224-0 | DOI Listing |
J Physiol
January 2025
Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA.
Bipolar cells are vertebrate retinal interneurons conveying signals from rod and cone photoreceptors to amacrine and ganglion cells. Bipolar cells are found in all vertebrates and have many structural and molecular affinities with photoreceptors; they probably appeared very early during vertebrate evolution in conjunction with rod and cone progenitors. There are two types of bipolar cells, responding to central illumination with depolarization (ON) or hyperpolarization (OFF).
View Article and Find Full Text PDFbioRxiv
December 2024
Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642.
Adaptive optics scanning light ophthalmoscopy (AOSLO) enables high-resolution retinal imaging, eye tracking, and stimulus delivery in the living eye. AOSLO-mediated visual stimuli are created by temporally modulating the excitation light as it scans across the retina. As a result, each location within the field of view receives a brief flash of light during each scanner cycle (every 33-40 ms).
View Article and Find Full Text PDFCell Chem Biol
November 2024
Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada. Electronic address:
Nano Lett
October 2024
Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
Tumor-associated antigens (TAAs) are not exclusively expressed in cancer cells, inevitably causing the "on target, off tumor" effect of molecular recognition tools. To achieve precise recognition of cancer cells, by using protein tyrosine kinase 7 (PTK7) as a model TAA, a DNA molecular logic circuit Aisgc8 was rationally developed by arranging H-binding i-motif, ATP-binding aptamer, and PTK7-targeting aptamer Sgc8c in a DNA sequence. Aisgc8 output the conformation of Sgc8c to recognize PTK7 on cells in a simulated tumor microenvironment characterized by weak acidity and abundant ATP, but not in a simulated physiological environment.
View Article and Find Full Text PDFElife
September 2024
Southwest United Graduate School,Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
To survive in challenging environments, animals must develop a system to assess food quality and adjust their feeding behavior accordingly. However, the mechanisms that regulate this chronic physiological food evaluation system, which monitors specific nutrients from ingested food and influences food-response behavior, are still not fully understood. Here, we established a low-quality food evaluation assay system and found that heat-killed (HK- a low-sugar food, triggers cellular UPR and immune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!