The presence of both nitrobenzylthioinosine-sensitive and nitrobenzylthioinosine-insensitive dipyridamole binding sites in postmortem human ependymal tissue is reported. Displacement studies using 15 nM [3H]dipyridamole revealed 50-60% of the sites were sensitive to nitrobenzylthioinosine. Non-linear analysis of binding isotherms to estimate the density of nitrobenzylthioinosine-sensitive and -insensitive sites revealed a maximum number of nitrobenzylthioinosine-sensitive binding sites (Bmax) of 395 +/- 19 fmol/mg protein and a nitrobenzylthioinosine-insensitive Bmax of 3910 +/- 700 fmol/mg protein (corresponding Kd values of 0.1 nM and 114 nM respectively). Thus there are approximately 10 times as many nitrobenzylthioinosine-insensitive sites as nitrobenzylthioinosine-sensitive [3H]dipyridamole binding sites in human ependymal membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0014-2999(94)90145-7 | DOI Listing |
Biochem Genet
January 2025
Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.
View Article and Find Full Text PDFEpigenetics
December 2025
Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, Key Laboratory of Structural Chemistry, CHINA.
One-step adsorptive purification of ethylene (C2H4) from ternary mixture comprising of acetylene (C2H2), ethylene (C2H4) and carbon dioxide (CO2) is a great challenge in the chemical industry. Herein, a microporous metal-organic framework (FJI-H38) has been reported, which possesses a high density of electronegative O/N binding sites and appropriate pore size. Notably, at 0.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Background: Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear.
View Article and Find Full Text PDFNat Commun
January 2025
Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
The rate at which transcription factors (TFs) bind their cognate sites has long been assumed to be limited by diffusion, and thus independent of binding site sequence. Here, we systematically test this assumption using cell-to-cell variability in gene expression as a window into the in vivo association and dissociation kinetics of the model transcription factor LacI. Using a stochastic model of the relationship between gene expression variability and binding kinetics, we performed single-cell gene expression measurements to infer association and dissociation rates for a set of 35 different LacI binding sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!