Interference following mixed infection of reovirus isolates is linked to the M2 gene.

J Virol

Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115.

Published: October 1994

Following infection by pairs of reovirus isolates consisting of combinations of reovirus T1 Lang, T2 Jones, or T3 Dearing, we found that one of the isolates interfered with the yield of progeny RNA derived from the other parents. The most significant interference was produced by T2 Jones or T3 Dearing, when mixed with T1 Lang. Genetic analysis revealed that the presence of the M2 gene in the interfering parent (in the T1 Lang x T3 Dearing pair) was linked to interference. Studies on interference in infected cells indicated that interference occurs after adsorption and penetration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC237087PMC
http://dx.doi.org/10.1128/JVI.68.10.6667-6671.1994DOI Listing

Publication Analysis

Top Keywords

reovirus isolates
8
jones dearing
8
interference
5
interference mixed
4
mixed infection
4
infection reovirus
4
isolates linked
4
linked gene
4
gene infection
4
infection pairs
4

Similar Publications

RNA Virus Discovery Sheds Light on the Virome of a Major Vineyard Pest, the European Grapevine Moth ().

Viruses

January 2025

Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina.

The European grapevine moth () poses a significant threat to vineyards worldwide, causing extensive economic losses. While its ecological interactions and control strategies have been well studied, its associated viral diversity remains unexplored. Here, we employ high-throughput sequencing data mining to comprehensively characterize the virome, revealing novel and diverse RNA viruses.

View Article and Find Full Text PDF

Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are vector-borne orbiviruses that pose an emerging threat to livestock, including cattle and sheep. This review summarizes the global distribution, genetic diversity, and key factors driving their spread along with the existing knowledge gaps and recommendations to mitigate their impact. Both viruses cause hemorrhagic disease in susceptible ruminants and are commonly reported in tropical and subtropical regions including North America, Asia, Africa, Oceania, and some parts of Europe.

View Article and Find Full Text PDF

Genome Characterization of Mammalian Orthoreovirus and Porcine Epidemic Diarrhea Virus Isolated from the Same Fattening Pig.

Animals (Basel)

January 2025

Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.

In 2020, severe diarrhea occurred in four-month-old fattening pigs from nine farms in Shandong Province, China. Fecal samples were collected from diseased pigs and tested by PCR for the presence of mammalian orthoreovirus (MRV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), porcine rotavirus A (PoRVA), transmissible gastroenteritis virus (TGEV), porcine kobuvirus (PKV), and pseudorabies virus (PRV). The viral RNA of MRV and PEDV was detected in the fecal samples.

View Article and Find Full Text PDF

Introduction: Avian orthoreovirus (ARV) is a significant pathogen causing viral arthritis, leading to substantial economic losses in the poultry industry worldwide.

Methods: A novel ARV strain, designated FJ202311, was isolated from a broiler farm in Fujian Province, China. Whole-genome sequencing was conducted using next-generation sequencing with MGI technology, and phylogenetic analysis of the sigma C amino acid sequence was performed.

View Article and Find Full Text PDF

Background: Viral gastroenteritis is a significant global health concern. An effective, rapid, and easy-to-use diagnostic tool is essential for screening causative viruses.

Methods: Forty-eight samples, known to be infected with one of the following viruses: norovirus, group A rotavirus, astrovirus, adenovirus, and sapovirus determined by reverse transcription-PCR and nucleotide sequencing, were evaluated by the Fast Track Diagnostics (FTD) viral gastroenteritis assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!