By use of (14)C-labeled benzyl penicillin, it has been established that beta-lactamases and/or acylases play no role in the resistance of Neisseria gonorrhoeae to penicillin. It has been found, however, that very susceptible strains of the organisms (minimal inhibitory concentration, 0.008 mug/ml) bind 10 to 15 times as much penicillin as do moderately to highly resistant strains of the gonoccoccus (minimal inhibitory concentration, 0.125 to 2.0 mug/ml). It is postulated that this degree of change in binding components of the whole cell and whole cytoplasmic membrane is sufficient to account for the decreased susceptibility of the organism to penicillin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC429227PMC
http://dx.doi.org/10.1128/AAC.7.6.788DOI Listing

Publication Analysis

Top Keywords

decreased susceptibility
8
neisseria gonorrhoeae
8
gonorrhoeae penicillin
8
minimal inhibitory
8
inhibitory concentration
8
penicillin
5
mechanism decreased
4
susceptibility neisseria
4
penicillin 14c-labeled
4
14c-labeled benzyl
4

Similar Publications

The coronavirus disease 2019 (COVID-19) interventions in interrupting transmission have paid heavy losses politically and economically. The Chinese government has replaced scaling up testing with monitoring focus groups and randomly supervising sampling, encouraging scientific research on the COVID-19 transmission curve to be confirmed by constructing epidemiological models, which include statistical models, computer simulations, mathematical illustrations of the pathogen and its effects, and several other methodologies. Although predicting and forecasting the propagation of COVID-19 are valuable, they nevertheless present an enormous challenge.

View Article and Find Full Text PDF

Nanoplastic (NP) pollution poses serious health hazards to aquatic ecosystems, impacting various physiological systems of aquatic organisms. This review examines the complex interplay between NPs and different physiological systems. In the digestive system, NPs downregulate the hsp70-like gene in Mytilus galloprovincialis, leading to decreased metabolic processes and impaired digestion.

View Article and Find Full Text PDF

CmTGA8-CmAPX1/CmGSTU25 regulatory model involved in trehalose induced cold tolerance in oriental melon seedlings.

Plant Physiol Biochem

December 2024

College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, China; Northern National & Local Joint Engineering Research Center of Horticultural Facilities Design and Application Technology, Shenyang, Liaoning, 110866, China. Electronic address:

Plants have developed complex regulatory networks to adapt to various stresses, including cold stress. Trehalose (Tre), known as the "sugar of life," plays a crucial role in enhancing cold tolerance by triggering antioxidation. However, the underlying regulatory mechanisms remain unclear.

View Article and Find Full Text PDF

Currently, the molecular mechanisms of azole resistance in C. glabrata are unresolved. This study aims to detect azole resistance of C.

View Article and Find Full Text PDF

Background: Hypoxia in tumor cells is linked to increased drug resistance and more aggressive behavior. In pancreatic cancer, the tumor microenvironment is notably hypoxic and exhibits strong immunosuppressive properties. Given that immunotherapy is now approved for pancreatic cancer treatment, further understanding of how pancreatic tumor cell hypoxia influences T-cell cytotoxicityis essential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!