Achondroplasia has been mapped to 4p16.3 using 18 multigenerational families with achondroplasia and 10 short tandem repeat polymorphic markers from this region. No evidence of genetic heterogeneity was found. Analysis of a recombinant family localizes the achondroplasia locus to the 2.5 Mb region between D4S43 and the telomere. Multipoint linkage analysis favors placement telomeric of D4S412. The establishment of closely linked markers will facilitate positional cloning of the achondroplasia gene and permit prenatal diagnosis of homozygous achondroplasia for at risk couples.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/3.5.787DOI Listing

Publication Analysis

Top Keywords

achondroplasia gene
8
achondroplasia
5
localization achondroplasia
4
gene distal
4
distal human
4
human chromosome
4
chromosome achondroplasia
4
achondroplasia mapped
4
mapped 4p163
4
4p163 multigenerational
4

Similar Publications

Achondroplasia, the most prevalent short-stature disorder, is caused by missense variants overactivating the fibroblast growth factor receptor 3 (FGFR3). As current surgical and pharmaceutical treatments only partially improve some disease features, we sought to explore a genetic approach. We show that an enhancer located 29 kb upstream of mouse Fgfr3 (-29E) is sufficient to confer a transgenic mouse reporter with a domain of expression in cartilage matching that of Fgfr3.

View Article and Find Full Text PDF

The current case report presents the postmortem examination findings of a 17-week-old female fetus displaying thanatophoric dysplasia type 1 (TD-1) due to a known fibroblast growth factor receptor 3 (FGFR3) gene mutation. Gross and X-ray examination revealed significant abnormalities, including skeletal malformations with prominent TD-1 femur curvature. Microscopical evaluation indicated inadequate histological growth for the gestational age, with specific organ immaturity noted in multiple hematoxylin and eosin sections from internal organs, bone from epiphyses and diaphyses levels.

View Article and Find Full Text PDF

Background: Fetal skeletal dysplasia (FSD) is a group of systemic bone and cartilage disorders that develop prenatally and can be detected using fetal ultrasonography. However, it is unsuitable for skeletal analysis because it is reflected by supersonic waves in the bone cortex. Three-dimensional computed tomography (3D-CT) is a suitable alternative and has improved the differential diagnosis of FSD during pregnancy.

View Article and Find Full Text PDF

Human craniofacial shape is highly variable yet highly heritable with numerous genetic variants interacting through multiple layers of development. Here, we hypothesize that Mendelian phenotypes represent the extremes of a phenotypic spectrum and, using achondroplasia as an example, we introduce a syndrome-informed phenotyping approach to identify genomic loci associated with achondroplasia-like facial variation in the general population. We compare three-dimensional facial scans from 43 individuals with achondroplasia and 8246 controls to calculate achondroplasia-like facial scores.

View Article and Find Full Text PDF

Purpose: Pseudoachondroplasia is a rare skeletal dysplasia caused by a mutation in the COMP gene. Infants with pseudoachondroplasia present with rhizomelic dwarfism. Pseudoachondroplasia can resemble achondroplasia, which also presents with a phenotype of rhizomelic dwarfism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!