The processing of wild type and mutant forms of rat nuclear pre-tRNA(Lys) by the homologous RNase P.

Nucleic Acids Res

Department of Biochemistry and Molecular Biophysics, Virginia Commonwealth University, Richmond 23298.

Published: August 1994

The 5' processing of rat pre-tRNA(Lys) and a series of mutant derivatives by rat cytosolic RNase P was examined. In standard, non-kinetic assays, mutant precursors synthesized in vitro with 5' leader sequences of 10, 17, 24, 25, and 46 nucleotides were processed to approximately equal levels and yielded precisely cleaved 5' processed intermediates with the normal 7-base pair aminoacyl stems. The construct containing the tRNA(Lys) with the 46-nucleotide leader was modified by PCR to give a series of pre-tRNA(Lys) mutants designed to measure the effect on processing by (1) substituting the nucleotide at the +1 position, (2) pairing and unpairing the +1 and +72 bases, (3) elongating the aminoacyl stem, and (4) disrupting the helix of the aminoacyl stem. Comparative kinetic analyses revealed that changing the wild type +1G to A, C, or U was well tolerated by the RNase P provided that compensatory changes at +72 created a base pair or a G.U noncanonical pair. Mutants with elongated aminoacyl stems that were produced either by inserting an additional base pair at +3:a + 69:a or by pairing the -1A with a +73U, were processed to yield 7-base pair aminoacyl stems, but with different efficiencies. The efficiency seen with the double insertion mutant was higher than even the wild type precursor, but the -1A-U + 73 mutant was a relatively poor substrate. Disrupting the aminoacyl stem helix by introducing a +7G G + 66 mispairing or by inserting a single G at the +3:a position dramatically reduced the processing efficiency, although the position of cleavage occurred precisely at the wild type cleavage site. However, the single insertion of a C at the +69:a position resulted in an efficiently cleaved precursor, but permitted a minor, secondary cleavage within the leader between the -6 and -5 nucleotides in addition to the dominant wild type scission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC523728PMC
http://dx.doi.org/10.1093/nar/22.16.3347DOI Listing

Publication Analysis

Top Keywords

wild type
20
aminoacyl stems
12
aminoacyl stem
12
7-base pair
8
pair aminoacyl
8
base pair
8
aminoacyl
6
type
5
mutant
5
pair
5

Similar Publications

Cardiac amyloidosis (CA) is an infiltrative disease that results from the deposition of amyloid fibrils in the myocardium, resulting in restrictive cardiomyopathy. The amyloid fibrils are predominantly derived from two parent proteins, immunoglobulin light chain (AL) and transthyretin (ATTR), and ATTR is further classified into hereditary (ATTRv) and wild-type (ATTRwt) based on the presence or absence, respectively, of a mutation in the transthyretin gene. Once thought to be a rare entity, CA is increasingly recognized as a significant cause of heart failure due to improved clinical awareness and better diagnostic imaging.

View Article and Find Full Text PDF

Spermidine enhances the heat tolerance of by promoting mitochondrial respiration driven by fatty acid β-oxidation.

Appl Environ Microbiol

January 2025

Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.

Unlabelled: High temperature is an unavoidable environmental stress that generally exerts detrimental effects on organisms and has widespread effects on metabolism. Spermidine is an important member of the polyamines family and is involved in a range of abiotic stress responses in plants. Mitochondria play an essential role in cellular homeostasis and are key components of the stress response.

View Article and Find Full Text PDF

Quorum sensing controls numerous processes ranging from the production of virulence factors to biofilm formation. Biofilms, communities of bacteria that are attached to one another and/or a surface, are common in nature, and when they form, they can produce a quorum of bacteria. One model system to study biofilms is the bacterium , which forms a biofilm that promotes the colonization of its symbiotic host.

View Article and Find Full Text PDF

SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in SYNGAP1 affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of SYNGAP1 mutation-mediated intellectual disability is unexplored.

View Article and Find Full Text PDF

Antileishmanial and Antitrypanosomal Trends of Synthetic Tetralone Derivatives.

Drug Dev Res

February 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia.

Leishmaniasis and trypanosomiasis are parasitic diseases that are closely linked to poverty, pose significant local burdens, and are common in tropical and subtropical regions. Various synthetic tetralone derivatives were studied as potential scaffolds for antileishmanial and antitrypanosomal activities. The compounds were studied for their effectiveness against multiple kinetoplastid protozoan pathogens: Leishmania major, Leishmania mexicana, and bloodstream trypomastigotes of Trypanosoma brucei brucei.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!