The nucleocapsid protein (NC) of all animal retroviruses is the major structural protein of the core ribonucleoprotein complex, bound to genomic RNA in mature virions. In a previous report, we showed that recombinant NC protein from HIV-1, a 71-amino-acid protein (NC71), is apparently able to form two types of protein-nucleic acid complexes under low [NaCl], pH 8.3 and 25 degrees C. These appeared to differ in occluded apparent site size, napp, forming n = 8 and n = 14 complexes on poly(A) (Dib-Hajj, F., Khan, R., and Giedroc, D. P. (1993) Protein Sci. 2, 331-243) under conditions of high and low protein-nucleotide ratios, respectively. Here we show that both NC71-poly(A) complexes strongly scatter light under these solution conditions. Examination of the wavelength dependence of the light scattering at lambda < or = 320 nm indicates that each complex is characterized by a different scattering coefficient. Optical density measurements suggest that upon formation of the saturated n = 8 complex, additional polynucleotide is not incorporated into the complex over a period of hours, i.e. the n = 14 complex is not formed via redistribution of the n = 8 complex under low salt conditions, 25 degrees C. In contrast, the n = 14 complex readily incorporates additional protein until that sufficient to form the n = 8 complex is present. The n = 14 complex efficiently precipitates poly(A) and shows spectral characteristics expected for an extensively charge-neutralized nucleic acid complex. At [NC71] in excess of that required to form the n = 8 complex, this n = 14 complex is best described as a kinetic intermediate on the pathway to the n = 8 complex, which forms over a period of hours under low salt conditions, 25 degrees C. This slow kinetics of binding provides a possible explanation for the finding that the previously observed moderate cooperativity of Zn2 NC71 binding to poly(A) (omega = 200) at pH 8.3 and 0.29 M NaCl (Khan, R., and Giedroc, D. P. (1992) J. Biol. Chem. 267, 6689-6695) is shown here to represent a nonequilibrium phenomenon, apparently converting to a low or no cooperativity complex over a period of hours. Proteolytic removal of the COOH-terminal 14 amino acids from NC71, forming a 57-amino-acid protein (denoted NC57), removes this apparent binding site size heterogeneity of NC71 on poly(A). At 20 mM NaCl, NC57 binds with n = 6-7 nucleotides, in a manner which is independent of the protein-poly(A) nucleotide ratio. The implications of these findings on processing of the gag precursor which leads to mature NC in HIV-1 virions is discussed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

complex
14
period hours
12
nucleic acid
8
protein
8
nucleocapsid protein
8
site size
8
khan giedroc
8
complex period
8
low salt
8
salt conditions
8

Similar Publications

The demographic history of a population, and the distribution of fitness effects (DFE) of newly arising mutations in functional genomic regions, are fundamental factors dictating both genetic variation and evolutionary trajectories. Although both demographic and DFE inference has been performed extensively in humans, these approaches have generally either been limited to simple demographic models involving a single population, or, where a complex population history has been inferred, without accounting for the potentially confounding effects of selection at linked sites. Taking advantage of the coding-sparse nature of the genome, we propose a 2-step approach in which coalescent simulations are first used to infer a complex multi-population demographic model, utilizing large non-functional regions that are likely free from the effects of background selection.

View Article and Find Full Text PDF

The identification of neoantigens is crucial for advancing vaccines, diagnostics, and immunotherapies. Despite this importance, a fundamental question remains: how to model the presentation of neoantigens by major histocompatibility complex class I molecules and the recognition of the peptide-MHC-I (pMHC-I) complex by T cell receptors (TCRs). Accurate prediction of pMHC-I binding and TCR recognition remains a significant computational challenge in immunology due to intricate binding motifs and the long-tail distribution of known binding pairs in public databases.

View Article and Find Full Text PDF

A comprehensive benchmarking for evaluating TCR embeddings in modeling TCR-epitope interactions.

Brief Bioinform

November 2024

Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, 999077, China.

The complexity of T cell receptor (TCR) sequences, particularly within the complementarity-determining region 3 (CDR3), requires efficient embedding methods for applying machine learning to immunology. While various TCR CDR3 embedding strategies have been proposed, the absence of their systematic evaluations created perplexity in the community. Here, we extracted CDR3 embedding models from 19 existing methods and benchmarked these models with four curated datasets by accessing their impact on the performance of TCR downstream tasks, including TCR-epitope binding affinity prediction, epitope-specific TCR identification, TCR clustering, and visualization analysis.

View Article and Find Full Text PDF

Hydrogen atom transfer (HAT) reactions and their kinetic barriers Δ are important in organic and inorganic chemistry. This study examines factors that influence Δ, reporting the kinetics and thermodynamics of HAT from various ruthenium bis(acetylacetonate) pyridine-imidazole complexes to nitroxyl radicals. Across these 36 reactions, the Δ and Δ can be independently varied, with different sets of Ru complexes primarily tuning either their ps or their °s.

View Article and Find Full Text PDF

Antiproliferative activity of a series of copper(II) complexes derived from a furan-containing -acylhydrazone: monomers, dimers, charge status, and cell mechanistic studies on triple negative breast cancer cells.

Dalton Trans

January 2025

CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 No. 1465, La Plata (1900), Argentina.

In this work, we evaluated the anticancer activity of compounds 1 (mononuclear) and 2 (dinuclear) copper(II) coordination compounds derived from the ligand 5-methylsalicylaldehyde 2-furoyl hydrazone (H2L) over MDA-MB-231 Triple-negative breast cancer (TNBC) cells, and compared their activities with that of a newly synthesized, protonated, dinuclear analogue of 2 (complex 3). Here, we report the synthesis of compound 3 and it has been characterized in the solid state (X-ray diffraction, FTIR) and in solution (EPR, UV-Vis, ESI) as well as its electrochemical profile. Complexes 1-3 impaired cell viability from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!