The product of the c-myc proto-oncogene, c-Myc, is a sequence-specific DNA binding protein with an N-terminal transactivation domain and a C-terminal DNA binding domain. Several lines of evidence indicate that c-Myc activity is essential for normal cell cycle progression. Since the abundance of c-Myc during the cell cycle is constant, c-Myc's activity may be regulated at a post-translational level. We have shown previously that the N-terminus of c-Myc can form a specific complex with the product of the retinoblastoma gene, pRb, in vitro. These data suggested a model in which pRb, or pRb-related proteins, regulate c-Myc activity through direct binding. We show here that the pRb-related protein p107, but not pRb itself, forms a specific complex with the N-terminal transactivation domain of c-Myc in vivo. Binding of p107 to c-Myc causes a significant inhibition of c-Myc transactivation. Expression of c-Myc releases cells from a p107-induced growth arrest, but not from pRb-induced growth arrest. Our data suggest that p107 can control c-Myc activity through direct binding to the transactivation domain and that c-Myc is a target for p107-mediated growth suppression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC395329PMC
http://dx.doi.org/10.1002/j.1460-2075.1994.tb06725.xDOI Listing

Publication Analysis

Top Keywords

c-myc
12
transactivation domain
12
c-myc activity
12
prb-related protein
8
protein p107
8
dna binding
8
n-terminal transactivation
8
cell cycle
8
specific complex
8
activity direct
8

Similar Publications

Selective Degradation of TEADs by a PROTAC Molecule Exhibited Robust Anticancer Efficacy In Vitro and In Vivo.

J Med Chem

January 2025

Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Province 750004, China.

Genetic mutations in components of the Hippo pathway frequently lead to the aberrant activation of TEADs, which is often associated with cancer. Consequently, TEADs have been actively pursued as therapeutic targets for diseases driven by TEAD overactivation. In this study, we report two series of TEAD PROTACs based on CRBN binders and VHL binders.

View Article and Find Full Text PDF

Background & Aims: Hepatic steatosis, characterized by lipid accumulation in hepatocytes, is a key diagnostic feature in patients with chronic hepatitis C virus (HCV) infection. This study aimed to clarify the involvement of phospholipid metabolic pathways in the pathogenesis of HCV-induced steatosis.

Methods: The expression and distribution of lipid species in the livers of human liver chimeric mice were analyzed using imaging mass spectrometry.

View Article and Find Full Text PDF

Decoding the genetic basis of secretory tissues in plants.

Hortic Res

January 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China.

Although plant secretory tissues play important roles in host defense against herbivores and pathogens and the attraction of insect pollinators, their genetic control remains elusive. Here, it is focused that current progress has been made in the genetic regulatory mechanisms underpinning secretory tissue development in land plants. C1HDZ transcription factors (TFs) are found to play crucial roles in the regulation of internal secretory tissues in liverworts and as well as external secretory tissues in peach.

View Article and Find Full Text PDF

Gene therapy in polycystic kidney disease: A promising future.

J Transl Int Med

December 2024

Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China.

Polycystic kidney disease (PKD) is a genetic disorder marked by numerous cysts in the kidneys, progressively impairing renal function. It is classified into autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), with ADPKD being more common. Current treatments mainly focus on symptom relief and slowing disease progression, without offering a cure.

View Article and Find Full Text PDF

MRPL24 drives breast cancer metastasis and stemness by targeting c-MYC, BRD4, and STAT3.

3 Biotech

February 2025

Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai, 200093 China.

Unlabelled: The study aims to investigate the clinicopathological significance of MRPL24 in human cancers, with a particular focus on breast cancer (BC). Comprehensive bioinformatics analyses were conducted using data from The Cancer Genome Atlas (TCGA) and various advanced database, including cBioPortal, UALCAN, TIMER, Prognoscan, TISIDB, KM Plotter, and The Human Protein Atlas, to provide a detailed evaluation of MRPL55's role in cancer. The findings were further validated through experimental studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!