Uracil DNA N-glycosylase (UDG) has been used as a model enzyme to test a novel universal approach to discriminate between two possible enzymatic mechanisms of specific site location in DNA, processive (DNA-scanning mechanism) and distributive (random diffusion-mediated mechanism). Two double-stranded concatemeric polynucleotides of defined length (440-480 nucleotides) containing deoxyuridine at either every 10th or 20th nucleotide in the DNA chain were prepared by the ligation of self-complementary 10- or 20-mer oligodeoxyribonucleotides. Incubation of these polynucleotides with Escherichia coli UDG, followed by thermal breakage of the abasic sites, formed fragments that were multiples of either the 10- or the 20-mer. Since the processive and distributive mechanisms of uracil removal by UDG would be very different, the fragment distribution, generated at each time interval during the UDG reaction, should be unique. To show this, we developed a computer model illustrating both possible mechanisms of UDG functioning. The distribution of DNA fragments experimentally generated during the time course of the UDG reaction was compared with the results of the computer programs that modeled the distributive and processive mechanisms. The data indicated that uracil removal, catalyzed by UDG, is consistent with a distributive model.
Download full-text PDF |
Source |
---|
Cell Commun Signal
January 2025
Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
Colorectal cancer (CRC) is the most common gastrointestinal malignancy, and 5-Fluorouracil (5-FU) is the principal chemotherapeutic drug used for its treatment. However, 5-FU resistance remains a significant challenge. Under stress conditions, tumor metabolic reprogramming influences 5-FU resistance.
View Article and Find Full Text PDFBiomolecules
November 2024
Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell'Immacolata (IDI-IRCCS), 00167 Rome, Italy.
UVB radiation induces DNA damage generating several thymine photo-adducts (TDPs), which can lead to mutations and cellular transformation. The DNA repair pathways preserve genomic stability by recognizing and removing photodamage. These DNA repair side products may affect cellular processes.
View Article and Find Full Text PDFProtein Pept Lett
December 2024
Department of Biotechnology, Jaypee Institute of Information Technology, A-10 Sec 62, Noida, 201309, India.
Endogenous or exogenous DNA damage needs to be repaired, therefore, cells in all the three domains have repair pathways to maintain the integrity of their genetic material. Uracil DNA glycosylases (UDGs), also known as UNGs (uracil-DNA N-glycosylases), are part of the base-excision repair (BER) pathway. These enzymes specifically remove uracil from DNA molecules by cleaving the glycosidic bond between the uracil base and the deoxyribose sugar.
View Article and Find Full Text PDFBMJ Open
January 2025
Colorectal Cancer Center, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Introduction: The standard of care for stage III colon cancer is 3 or 6 months of double-drug regimen chemotherapy following radical surgery. However, patients with positive circulating tumour DNA (ctDNA) exhibit a high risk of recurrence risk even if they receive standard adjuvant chemotherapy. The potential benefit of intensified adjuvant chemotherapy, oxaliplatin, irinotecan, leucovorin and fluoropyrimidine (FOLFOXIRI), for ctDNA-positive patients remains to be elucidated.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Gastric Cancer Center, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Chemoresistance severely deteriorates the prognosis of advanced gastric cancer (GC) patients. Several studies demonstrated that (HP)-positive GC patients showed better outcomes after receiving chemotherapy than HP-negative ones. This study aims to confirm the role of HP in GC chemotherapy and to study the underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!