Over the past 5 years, microphysiometry has proved an effective means for detecting physiological changes in cultured cells, particularly as a functional assay for the activation of many cellular receptors. To demonstrate the clinical relevance of this method, we have used it to detect bacterial antibiotic sensitivity and to discriminate between bacteriostatic and bacteriocidal concentrations. The light-addressable potentiometric sensor, upon which microphysiometry is based, is well suited for structural manipulations based on photolithography and micromachining, and we have begun to take advantage of this capability. We present results from a research instrument with eight separate assay channels on a 5-cm2 chip. We discuss the planned evolution of the technology toward high-through-put instruments and instruments capable of performing single-cell measurements.
Download full-text PDF |
Source |
---|
Rev Sci Instrum
January 2025
NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA.
This work describes the design and implementation of optics for EXCLAIM, the EXperiment for Cryogenic Large-Aperture Intensity Mapping. EXCLAIM is a balloon-borne telescope that will measure integrated line emission from carbon monoxide at redshifts z < 1 and ionized carbon ([CII]) at redshifts z = 2.5 - 3.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Department of Mechanical Engineering, Binghamton University, Binghamton, New York 13902, USA.
A study is presented of a method for creating an acoustic flow sensor that is generally compatible with current silicon microfabrication processes. An aim of this effort is to obtain a design consisting of a minimal departure from the existing designs employed in mass-produced silicon microphones. Because the primary component in all of these microphones is the cavity behind the pressure-sensing diaphragm, we begin with a study of the acoustic particle velocity within a cavity in a planar surface.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
Glutathione (GSH) plays a vital role in the regulation of intracellular functions which alterations in physiological glutathione levels are associated to various diseases. Molecular bioimaging is a sensitive method for GSH detection, but challenges persist in the development of fluorescent probes, mainly concerning long-term tracking of intracellular GSH concentration because of aggregation of molecular probes and their washout in cells. Engineered nanomaterials have shown great promise for increasing the disease diagnosis accuracy.
View Article and Find Full Text PDFLab Chip
January 2025
Sensors and Devices Center, Bruno Kessler Foundation, Via Sommarive 18, 38123 Trento, Italy.
Microneedles hold the potential for enabling shallow skin penetration applications where biomarkers are extracted from the interstitial fluid (ISF) and drugs are injected in a painless and effective manner. To this purpose, needles must have an inner channel. Channeled needles were demonstrated using custom silicon microtechnology, having several needle tip geometries.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
Department of Materials Science and Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA, 94305, USA.
Silicon-based microelectronics can scalably record and modulate neural activity at high spatiotemporal resolution, but their planar form factor poses challenges in targeting 3D neural structures. A method for fabricating tissue-penetrating 3D microelectrodes directly onto planar microelectronics using high-resolution 3D printing via 2-photon polymerization and scalable microfabrication technologies are presented. This approach enables customizable electrode shape, height, and positioning for precise targeting of neuron populations distributed in 3D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!