Octopamine enhances phagocytosis in cockroach hemocytes: involvement of inositol trisphosphate.

Arch Insect Biochem Physiol

Department of Biology, University of Waterloo, Ontario, Canada.

Published: September 1994

Octopamine and 5-hydroxytryptamine (5-HT) were previously shown to affect phagocytosis in cockroach hemocytes through unidentified receptor-mediated events. In the present study, we examined the ability of 5-HT and octopamine to enhance inositol trisphosphate (IP3) production using hemocyte membranes of the American cockroach, Periplaneta americana. Octopamine enhanced IP3 production with a maximal peak at 100 nM. Similarly, 5-HT enhanced IP3 production with a maximal effect at 10 nM. The effects of 5-HT and octopamine are not additive, suggesting that both are working through the same receptor. Phentolamine, a general octopamine antagonist, blocked the effects of octopamine and 5-HT, while a mammalian 5-HT2 antagonist that blocks 5-HT-sensitive receptors in insect peripheral tissue, ketanserin, did not. A pharmacological profile indicates that the receptor is similar to an octopamine1-type. Octopamine at 1 microM increased phagocytosis in cockroach hemocytes exposed to Staphylococcus aureus in vitro, and this effect was mimicked by IP3 (10 microM). The octopamine-treated hemocytes were shown to increase IP3 production in the latter stage of phagocytosis. Adult cockroaches exposed to an LD50 dose of S. aureus in conjunction with either 0.1 mM octopamine or the octopamine1 agonist, clonidine, had higher survival rates compared to saline-treated cockroaches. Correspondingly, the octopamine1 antagonist, chlorpromazine, partially blocked the octopamine-mediated increase in cockroach survival.

Download full-text PDF

Source
http://dx.doi.org/10.1002/arch.940260402DOI Listing

Publication Analysis

Top Keywords

ip3 production
16
phagocytosis cockroach
12
cockroach hemocytes
12
octopamine
9
inositol trisphosphate
8
5-ht octopamine
8
enhanced ip3
8
production maximal
8
cockroach
5
5-ht
5

Similar Publications

Astrocytes from different brain regions respond with Ca elevations to the catecholamine norepinephrine (NE). However, whether this noradrenergic-mediated signaling is present in astrocytes from the ventral tegmental area (VTA), a dopaminergic circuit receiving noradrenergic inputs, has not yet been investigated. To fill in this gap, we applied a pharmacological approach along with two-photon microscopy and an AAV strategy to express a genetically encoded calcium indicator in VTA astrocytes.

View Article and Find Full Text PDF

: Increased sodium chloride (NaCl) intake led to leukocyte activation and impaired vasodilatation via increased oxidative stress in human/animal models. Interestingly, subpressor doses of angiotensin II (AngII) restored endothelium-dependent vascular reactivity, which was impaired in a high-salt (HS) diet in animal models. Therefore, the present study aimed to assess the effects of AngII exposure following high salt (HS) loading on endothelial cells' (ECs') viability, activation, and reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Transcriptional regulation in the absence of inositol trisphosphate receptor calcium signaling.

Front Cell Dev Biol

December 2024

MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States.

The activation of IP receptor (IPR) Ca channels generates agonist-mediated Ca signals that are critical for the regulation of a wide range of biological processes. It is therefore surprising that CRISPR induced loss of all three IPR isoforms (TKO) in HEK293 and HeLa cell lines yields cells that can survive, grow and divide, albeit more slowly than wild-type cells. In an effort to understand the adaptive mechanisms involved, we have examined the activity of key Ca dependent transcription factors (NFAT, CREB and AP-1) and signaling pathways using luciferase-reporter assays, phosphoprotein immunoblots and whole genome transcriptomic studies.

View Article and Find Full Text PDF

Inositol phosphates dynamically enhance stability, solubility, and catalytic activity of mTOR.

J Biol Chem

December 2024

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA. Electronic address:

Mechanistic target of rapamycin (mTOR) binds the small metabolite inositol hexakisphosphate (IP) as shown in structures of mTOR; however, it remains unclear if IP, or any other inositol phosphate species, function as an integral structural element(s) or catalytic regulator(s) of mTOR. Here, we show that multiple, exogenously added inositol phosphate species can enhance the ability of mTOR and mechanistic target of rapmycin complex 1 (mTORC1) to phosphorylate itself and peptide substrates in in vitro kinase reactions, with the higher order phosphorylated species being more potent (IP = IP > IP >> IP). IP increased the V and decreased the apparent K of mTOR for ATP.

View Article and Find Full Text PDF

Aims/hypothesis: Upregulation of serum leucine-rich α-2-glycoprotein 1 (LRG1) has been implicated in diet-induced obesity and metabolic disorders. However, its specific hormonal actions remain unclear. This study aimed to determine whether diet-enhanced serum LRG1 levels promote hyperinsulinaemia by directly stimulating insulin secretion from pancreatic beta cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!