Arachidonic acid is oxidized to regioisomeric 5(S)-, 12(S)- and 15(S)-hydroxyeicosatetraenoic acids by the corresponding 5-, 12- and 15-lipoxygenases. These hydroxylated fatty acids can then be incorporated into cellular phospholipids. Negative liquid secondary ion tandem mass spectrometry using a high-energy collision regime in a tandem four-sector mass spectrometer was used to characterize regioisomeric hydroxyeicosatetraenoic acids and the corresponding hydroxyeicosatetraenoic phosphatidylcholine species. Collision-induced dissociation (CID) of the [M-H]- negative ion at m/z 319 from the hydroxyeicosatetraenoic acids regioisomers produced some similar product ions, such as m/z 301 [M-H-H2O]- and m/z 257 [M-H-(H2O + CO2)]-. In addition, product ions characteristic of the particular hydroxyeicosatetraenoic acid were formed from alpha-cleavages adjacent to the hydroxyl moieties. Negative liquid secondary ion mass spectrometry of purified hydroxyeicosatetraenoate phosphatidylcholine species gave an ion at m/z 810 [M-CH3]-. CID of the m/z 810 ion gave product ions at m/z 283 and m/z 319, corresponding to stearate at the sn-1 position and hydroxyeicosatetraenoate at the sn-2 position, respectively. From CID of the negative ion at m/z 319 and examination of the product ion spectra, the hydroxyeicosatetraenoate regioisomer present in the phosphatidylcholine could be identified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bms.1200230704 | DOI Listing |
Ann Vasc Surg
January 2025
Division of Vascular and Endovascular Surgery, Mayo Clinic, Jacksonville, FL. Electronic address:
Objective: Lipids are key molecules for atherosclerosis, with tight regulation mechanisms, making them potential biomarkers for disease-specific diagnostics and therapeutics. Therefore, we aim to perform a systematic literature review on lipidomic analysis in serum/plasma and plaque samples of patients with carotid atherosclerosis.
Methods: We performed a systematic review following the PRISMA guidelines on the lipidomic profile in serum/plasma and carotid artery plaques from patients with significant carotid disease by degree of stenosis in preoperative imaging and clinical presentation (symptomatic, asymptomatic, radiation-induced carotid disease).
Sci Rep
January 2025
Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.
In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.
View Article and Find Full Text PDFActa Neuropathol
December 2024
Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany.
Nerve injury causes neuropathic pain and multilevel nerve barrier disruption. Nerve barriers consist of perineurial, endothelial and myelin barriers. So far, it is unclear whether resealing nerve barriers fosters pain resolution and recovery.
View Article and Find Full Text PDFRespir Res
November 2024
Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA.
Objectives: Pulmonary arterial hypertension (PAH) is characterized by the remodeling of the pulmonary vascular bed leading to elevation of the pulmonary arterial pressure. Oxidized fatty acids, such as hydroxyeicosatetraenoic acids (HETEs), play a critical role in PAH. We have previously established that dietary supplementation of 15-HETE is sufficient to cause PH in mice, suggesting a role for the gut-lung axis.
View Article and Find Full Text PDFCells
November 2024
Eye Research Institute, Oakland University, Rochester, MI 48309, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!