The relationship of yeast metallothionein (MT) and (gamma EC)nG isopeptides (phytochelatins) in metal ion buffering was assessed. The effect of constitutive expression of yeast metallothionein (MT) genes on accumulation of metal-(gamma EC)nG isopeptide (phytochelatin) complexes was analyzed in Candida glabrata and Schizosaccharomyces pombe cultures incubated in the presence of cadmium salts. Constitutive expression of the Saccharomyces cerevisiae MT (CUP1) gene inhibited the accumulation of metal-phytochelatin complexes in both C. glabrata and S. pombe. Intracellular Cd(II) sequestration occurred by formation of CdMT complexes. Phytochelatin (gamma EC)nG complexes appear to function in metal buffering in cells when MT genes are not present or expressed. A third condition in which metal-(gamma EC)nG complexes are observed is when constitutively expressed MT does not accumulate. We observed that C. glabrata lacking the AMT1 gene necessary for copper induction of the MT genes expressed MTII constitutively, but this expression does not lead to CdMTII accumulation. Only Cd-(gamma EC)nG complexes accumulate. Likewise, metal exposed cultures of S. cerevisiae (cup1) transformed with C. glabrata MTII under the constitutive ADH1 promoter resulted in constitutive expression of MTII and accumulation of CuMTII complexes but no CdMTII complexes. The inability of constitutively expressed C. glabrata MTII to buffer Cd(II) ions may arise in part from an inherent kinetic lability of CdMTII complexes. Incubation of ZnMTII with a metallochromic chelator, 4-(2-pyridylazo)resorcinol resulted in greater Zn(II) loss than Zn(II) complexes with CUP1 MT and C. glabrata MTI. C. glabrata MTII appears to be the first MT described which forms an unstable Cd(II) complex.

Download full-text PDF

Source

Publication Analysis

Top Keywords

gamma ecng
12
constitutive expression
12
ecng complexes
12
glabrata mtii
12
complexes
10
metal ion
8
ion buffering
8
ecng isopeptides
8
yeast metallothionein
8
metal-gamma ecng
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!