The content of 4-amino-4-deoxy-L-arabinopyranose (L-Arap4N) and the phosphate substitution pattern of the LPS of various strains from Salmonella minnesota, Yersinia enterocolitica and Proteus mirabilis was determined by GC/MS, HPLC and 31P-NMR. These data allowed us to examine the possible role of these components for the polymyxin B-binding capacity of LPS and for the minimal inhibiting concentration (MIC) and the minimal bactericidal concentration (MBC) of polymyxins B and E towards the respective R-mutants. Contrary to other investigated Re-, Rd- and Rc-mutants of S. minnesota, strain R595 (Re-mutant) showed about a 90% substitution of the ester-linked phosphate-group with L-Arap4N, whereas the L-Arap4N content of the other S. minnesota strains amounted to 17-25%. Neither the binding capacity of LPS to polymyxin B, determined by a bioassay, nor the MIC- and MBC-values of the R-mutants were significantly affected by this alteration. Similar results were obtained after using the temperature-dependent changes in the L-Arap4N-content and phosphate substitution pattern of Y. enterocolitica 75R. In order to explore the relevant polymyxin B binding site, lipid A samples with or without substitution of their ester-linked phosphate group were prepared and subjected to the polymyxin-binding assay. The results obtained so far indicated that the inner core bound L-Arap4N, detected in all resistant strains investigated, may play a decisive role in the decreased binding of polymyxin B, responsible for the bacterial resistance towards polymyxin(s).

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-695X.1994.tb00460.xDOI Listing

Publication Analysis

Top Keywords

phosphate substitution
8
substitution pattern
8
capacity lps
8
substitution ester-linked
8
polymyxin
5
4-amino-4-deoxy-l-arabinose lps
4
lps enterobacterial
4
enterobacterial r-mutants
4
r-mutants role
4
role polymyxin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!