GABAergic interneurons in the somatosensory thalamus of the guinea-pig: a light and ultrastructural immunocytochemical investigation.

Neuroscience

Dipartimento Neurofisiologia, Istituto Nazionale Neurologico C. Besta, Milano, Italy.

Published: April 1994

This work was performed to confirm previous data reporting the presence of GABAergic interneurons in the ventrobasal complex of guinea-pig, and to investigate the intrinsic organization of this nucleus compared to that of thalamic nuclei lacking interneurons. Immunocytochemical experiments were performed on the thalamus of adult guinea-pigs perfused with mixed aldehydes using an anti-GABA serum. At light microscopy, the immunoreaction on floating Vibratome sections showed that GABAergic neurons are present only in the reticular and lateral geniculate nuclei and in the ventrobasal complex. Quantitative evaluation of their number indicated that they are 20 and 15% of the total neuronal population in lateral geniculate nucleus and ventrobasal complex, respectively, while they are less than 1% in ventrolateral nucleus. At the ultrastructural level, the postembedding immunogold procedure showed the presence, in the ventrobasal complex, of GABA-labeled profiles involved in complex synaptic arrangements similar to those found in carnivores and primates. Conversely, GABA-labeled terminals in thalamic nuclei devoid of interneurons formed exclusively axo-dendritic or axo-somatic contacts, like in rats and mice. The present data suggest that GABAergic neurons in the ventrobasal complex of guinea-pigs give rise to functionally important rearrangements of its intrinsic synaptic organization and that they represent the morphological basis for an intrinsic modulatory mechanism that is absent in other thalamic nuclei lacking inhibitory interneurons. The phylogenetic implications of these findings are also discussed in comparison to other animal species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0306-4522(94)90299-2DOI Listing

Publication Analysis

Top Keywords

ventrobasal complex
20
thalamic nuclei
12
gabaergic interneurons
8
nuclei lacking
8
gabaergic neurons
8
lateral geniculate
8
complex
6
ventrobasal
5
gabaergic
4
interneurons somatosensory
4

Similar Publications

Maternally activated connections of the ventral lateral septum reveal input from the posterior intralaminar thalamus.

Brain Struct Funct

January 2025

Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary.

The lateral septum (LS) demonstrates activation in response to pup exposure in mothers, and its lesions eliminate maternal behaviors suggesting it is part of the maternal brain circuitry. This study shows that the density of pup-activated neurons in the ventral subdivision of the LS (LSv) is nearly equivalent to that in the medial preoptic area (MPOA), the major regulatory site of maternal behavior in rat dams. However, when somatosensory inputs including suckling were not allowed, pup-activation was markedly reduced in the LSv.

View Article and Find Full Text PDF

This mini-review explores sexual dimorphism in the ventral midline thalamus, focusing on the reuniens nucleus and its role in behavioral functions. Traditionally linked to tasks such as working memory, cognitive flexibility, fear generalization, and memory consolidation, most studies have been conducted in male rodents. Research comparing the effects of ventral midline thalamus manipulations between female and male rodents is limited.

View Article and Find Full Text PDF

Thalamo-insular cortex connections in the rat and human.

Neurosci Lett

December 2024

Department of Anatomy, Koç University, School of Medicine, Istanbul, Turkey. Electronic address:

The insular cortex (ICx) has a role in large a variety of functions. Thalamus plays an important role in modulating cortical functions. The present study aims to show thalamic-ICx connections using the fluoro-gold (FG) tracing method in rats and diffusion tensoring-based tractography (DTI) in humans.

View Article and Find Full Text PDF

The role of the medial part of the thalamus, and in particular the mediodorsal nucleus (MD) and the mammillothalamic tract (MTT), in memory has long been studied, but their contribution remains unclear. While the main functional hypothesis regarding the MTT focuses on memory, some authors postulate that the MD plays a supervisory executive role (indirectly affecting memory retrieval) due to its dense structural connectivity with the prefrontal cortex (PFC). Recently, it has been proposed that the MD, MTT and PFC form part of the DMN the default mode network (DMN).

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) stands as a pivotal tool in advancing our comprehension of Schizophrenia, offering insights into functional segregations and integrations. Previous investigations employing either task-based or resting-state fMRI primarily focused on large main regions of interest (ROI), revealing the thalamus and superior temporal gyrus (STG) as prominently affected areas. Recent studies, however, unveiled the cytoarchitectural intricacies within these regions, prompting a more nuanced exploration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!