The entomopathogenic fungus, Metarhizium anisopliae, produces three distinct types of proteinases during growth on cockroach cuticle. These were separated by analytical isoelectric focusing and characterized according to their substrate specificity and inhibition patterns as Pr1 subtilisin-like proteinases (four isoforms pI range approximately 9.3-10.2), a thermolysin-like metalloproteinase (pI approximately 7.3), and trypsin-like serine Pr2 proteinases (two major isoforms, pI approximately 4.4 and 4.9 and two minor isoforms, pI approximately 5.2). Preparative isoelectric focusing was used to separate the four Pr1(2) components produced during growth on cockroach cuticle with isoelectric points of 10.2 (m = 30.2 kDa), 9.8 (m = 28.5 kDa), 9.3 (m = 29.5 kDa), and 9.0 (m = 31.5 kDa). Two of the isoforms were also produced, at diminished levels, during growth on elastin or cellulose presumably as a result of carbon and nitrogen derepression. The pI 10.2 Pr1 differed from the other isoforms in preferring alanine over bulky hydrophobic groups at P2 and P3, in discriminating against proline at P2 and in its lack of sensitivity to tetra-butyl-oxycarbonyl-Gly-Leu-Phe-chloromethyl ketone. Differences in the N-terminal amino acid sequences confirmed that the four isoforms are related products of at least two distinct genes. The isoforms showed similar primary specificities, with the aromatic P1 phenylalanine being 10- to 16-fold more reactive than a P1 leucine residue reflected principally in Kcat. However, methionine (containing a long unsubstituted side chain) was also a good substrate for each isoform confirming the low selectivity of their S1 subsites. The isoforms all degraded a variety of solubilized cuticle proteins, with high-molecular-weight acidic proteins being preferentially hydrolyzed. The metalloproteinase is active against the Pr1 substrate succinyl-(Ala)2-Pro-Phe-7-amino-4-coumarin trifluoromethyl, but differs from the Pr1 isoforms in being inhibited by 1,10-phenanthroline and phosphoramidon. The potential role of the metalloproteinase in pathogenicity is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1006/abbi.1994.1350DOI Listing

Publication Analysis

Top Keywords

isoforms
10
metarhizium anisopliae
8
growth cockroach
8
cockroach cuticle
8
isoelectric focusing
8
pr1
5
isoforms cuticle-degrading
4
cuticle-degrading pr1
4
pr1 proteinase
4
proteinase production
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea, Republic of (South).

Background: The Apolipoprotein E4 isoform (ApoE4), encoded by the APOE gene, stands out as the most influential genetic factor in late-onset Alzheimer's disease (LOAD). The ApoE4 isoform contributes to metabolic and neuropathological abnormalities during brain aging, with a strong correlation observed in APOE4-positive Alzheimer's disease cases between phosphorylated tau burden and amyloid deposition. Despite compelling evidence of APOE-mediated neuroinflammation influencing the progression of tau-mediated neurodegeneration, the molecular mechanisms underlying these phenomena remain largely unknown.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Actinogen Medical, Sydney, Australia.

Background: Selecting the optimal dose for clinical development is especially problematic for drugs directed at CNS-specific targets. For drugs with a novel mechanism of action, these problems are often greater. We describe Xanamem's clinical pharmacology, including the approach to dose selection and proof-of-concept studies.

View Article and Find Full Text PDF

Background: Elevation of cerebrospinal fluid (CSF) tau is a feature of Alzheimer's disease (AD) and is being explored as a biomarker of AD and other tauopathies. The aim of this study was to elucidate the in vivo effects of DA-7503, a potent and selective tau aggregation inhibitor, and its pharmacodynamics on CSF tau in transgenic mouse models of Alzheimer's disease and primary tauopathies.

Method: TauP301L-BiFC mice expressing full-length human tau with the P301L mutation were orally administrated with DA-7503 for 1 month.

View Article and Find Full Text PDF

Background: There are no cures for Alzheimer's disease (AD), a progressive neurodegenerative disorder characterized by elevation of beta-amyloid and tau proteins besides neuronal death and causing cognitive impairment. Phosphodiesterase 5 (PDE5) is a cyclic guanosine monophosphate-degrading enzyme involved in numerous biological pathways including those relevant to memory formation. PDE5 inhibition offers the potential to attenuate AD progression by acting at the downstream level of beta-amyloid and tau elevation.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Oligomerix, Inc., Bronx, NY, USA.

Background: OLX-07010 is an oral small molecule inhibitor of tau self-association that prevented the accumulation of tau aggregates in the htau mouse model expressing wild type human CNS tau isoforms and in P301L tau JNPL3 mice using chronic treatment by administration in diet (Davidowitz et al., 2020, PMID: 31771053; 2023 PMID:37556474). A therapeutic study of JNPL3 mice with chronic treatment from 7-12 months of age inhibited the progression of tau aggregation and improved motor coordination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!