Characteristic features of mammalian small heat shock proteins are their rapid phosphorylation in response to stress and mitogenic signals and their ability to form multimeric particles of 200-700 kDa and large aggregates up to 5000 kDa. Recently, a chaperoning function and an actin polymerization-inhibiting activity were demonstrated for the recombinant murine and turkey small heat shock protein, respectively. In this paper, we demonstrate that the actin polymerization-inhibiting activity of the murine small heat shock protein HSP25 is dependent on the degree of its phosphorylation and structural organization. Non-phosphorylated and phosphorylated HSP25 monomers, as well as non-phosphorylated multimeric HSP25 particles, were isolated from Ehrlich ascites tumor cells by ammonium sulfate precipitation, column chromatography, and ultracentrifugation and tested for their actin polymerization-inhibiting activity. Fluorescence spectroscopy and electron microscopy were used to monitor actin polymerization. Non-phosphorylated HSP25 monomers were active in inhibiting actin polymerization with about 90% inhibition at a 1:1 ratio of actin to HSP25, while phosphorylated HSP25 monomers and non-phosphorylated multimeric HSP25 particles were inactive. Furthermore, we present electron microscopic data on the structure of HSP25 particles.

Download full-text PDF

Source

Publication Analysis

Top Keywords

small heat
16
heat shock
16
actin polymerization-inhibiting
16
polymerization-inhibiting activity
16
shock protein
12
hsp25 monomers
12
hsp25 particles
12
hsp25
9
murine small
8
protein hsp25
8

Similar Publications

INTERACTION OF SMALL HEAT SHOCK PROTEINS WITH BAG3.

Biochimie

January 2025

Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University; Department of Biochemistry and Regenerative Biomedicine Faculty of Basic Medicine, M.V. Lomonosov Moscow State University. Electronic address:

BAG3 is a universal adapter protein involved in various cellular processes, including the regulation of apoptosis, chaperone-assisted selective autophagy, and heat shock protein function. The interaction between small heat shock proteins (sHsps) and their α-crystallin domains (Acds) with full-length BAG3 protein and its IPV domain was analyzed using size-exclusion chromatography, native gel electrophoresis, and chemical cross-linking. HspB7 and the 3D mutant of HspB1 (which mimics phosphorylation) showed no interaction, HspB6 weakly interacted, and HspB8 strongly interacted with full-length BAG3.

View Article and Find Full Text PDF

Solar Evaporator with Dual Gradient Heating Effect for Sustained and Efficient Desalination.

Small

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.

Solar desalination shows promise in tackling freshwater shortages, but challenges arise from the trade-off between water transportation and heat supply, affecting evaporators' efficiency and salt resistance. Additionally, intermittent nature of solar radiation significantly diminishes overall evaporative performance. This study presents dual-gradient heating solar evaporator for efficient desalination.

View Article and Find Full Text PDF

The pathological deposition of tau and amyloid-beta into insoluble amyloid fibrils are pathological hallmarks of Alzheimer's disease. Molecular chaperones are important cellular factors contributing to the regulation of tau misfolding and aggregation. Here we reveal an Hsp90-independent mechanism by which the co-chaperone p23 as well as a molecular complex formed by two co-chaperones, p23 and FKBP51, modulates tau aggregation.

View Article and Find Full Text PDF

Superfast nanodroplet propulsion in 2D nanochannels tuned by strain gradients.

Nanoscale

January 2025

Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, China.

Directional transport of droplets is crucial for industrial applications and chemical engineering processes, with significant potential demonstrated in water harvesting, microfluidics, and heat transfer. In this work, we present a novel approach to induce self-driving behavior in nanodroplets within a two-dimensional (2D) nanochannel using a strain gradient, as demonstrated through molecular dynamics simulations. Our findings reveal that a small strain gradient imposed along a nanochannel constructed by parallel surfaces can induce water transport at ultrafast velocities (O(10 m s)), far exceeding macroscale predictions.

View Article and Find Full Text PDF

Yeast frataxin (Yfh1) is a small natural protein from yeast that has the unusual property of undergoing cold denaturation at temperatures above the freezing point of water when under conditions of low ionic strength. This peculiarity, together with remarkable resilience, allows the determination, for the whole protein as well as for individual residues, of the stability curve, that is the temperature dependence of the free energy difference between the unfolded and folded forms. The ease of measuring stability curves without the need to add denaturants or introduce destabilizing mutations makes this protein an ideal 'tool' for investigating the influence of many environmental factors on protein stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!