Antiestrogens antagonize many genomic effects of estrogen through binding to the nuclear estrogen receptor. We report here that NIH3T3 fibroblasts grown in the presence of colchicine acquire the activation of a large conductance chloride channel upon exposure to extracellular but not intracellular antiestrogens. This effect can be prevented by extracellular 17 beta-estradiol, but not intracellular 17 beta-estradiol or extracellular 17 alpha-estradiol. This is the first demonstration of a regulatory role for antiestrogens and estrogens in the regulation of ionic channels occurring through an interaction of these compounds with a plasma membrane binding site distinct from the classical estrogen receptor and subsequent activation of intracellular second messenger pathway (or pathways).

Download full-text PDF

Source
http://dx.doi.org/10.1096/fasebj.8.10.8050676DOI Listing

Publication Analysis

Top Keywords

plasma membrane
8
large conductance
8
conductance chloride
8
chloride channel
8
estrogen receptor
8
novel plasma
4
membrane action
4
estrogen
4
action estrogen
4
antiestrogens
4

Similar Publications

Discovery of New Benzohydrazide Derivatives Containing 4-Aminoquinazoline as Effective Agricultural Fungicides, the Related Mechanistic Study, and Safety Assessment.

J Agric Food Chem

January 2025

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.

A total of 38 new benzohydrazide derivatives bearing the 4-aminoquinazoline moiety were designed and synthesized based on the active subunit combination approach and tested in detail for their inhibition activities against eight agricultural phytopathogenic fungi. The bioassay results indicated that many of the synthesized compounds exhibited extraordinary fungicidal activities in vitro against the tested fungi. For example, compounds , , , and had EC (half-maximal effective concentration) values of 0.

View Article and Find Full Text PDF

The effect of physical cues on platelet storage lesion.

Hematology

December 2025

Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.

Background: Platelet concentrates play an important role in clinical treatment such as platelet function disorders and thrombocytopenia. In the process of preparation and storage of platelets, centrifugation, leukofiltration, and agitation will cause morphological changes and impaired function of platelets, which is associated with the increase of platelet transfusion refractoriness, and named as platelet storage lesion (PSL).

Method: This paper proposes three major operations (centrifugation, agitation, and leukofiltration) that platelets experience during the preparation and storage process, to explore the effect of physical cues on PSL.

View Article and Find Full Text PDF

Photodynamic therapy (PDT), utilizing a photosensitizer (PS) to induce tumor cell death, is an effective modality for cancer treatment. PS-peptide conjugates have recently demonstrated remarkable antitumor potential in preclinical trials. However, the limited cell membrane binding affinity and rapid systemic clearance have hindered their transition to clinical applications.

View Article and Find Full Text PDF

Eggshell membrane (ESM) is a rich source of bioactive compounds, including proteins, peptides, and antioxidants, contributing to its potential therapeutic benefits. These natural antioxidants might help neutralize reactive oxygen species (ROS) and modulate inflammatory responses, which are often linked with chondrocyte damage in osteoarthritis. In this study, we investigated the functional effects of ESM proteins on HO-induced oxidative stress in a neonatal canine chondrocytes.

View Article and Find Full Text PDF

Golgi protein 73: the driver of inflammation in the immune and tumor microenvironment.

Front Immunol

January 2025

Hangzhou Lin'an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China.

Golgi Protein 73 (GP73) is a Golgi-resident protein that is highly expressed in primary tumor tissues. Initially identified as an oncoprotein, GP73 has been shown to promote tumor development, particularly by mediating the transport of proteins related to epithelial-mesenchymal transition (EMT), thus facilitating tumor cell EMT. Though our previous review has summarized the functional roles of GP73 in intracellular signal transduction and its various mechanisms in promoting EMT, recent studies have revealed that GP73 plays a crucial role in regulating the tumor and immune microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!