Saposin C induces pH-dependent destabilization and fusion of phosphatidylserine-containing vesicles.

FEBS Lett

Department of Metabolism and Pathological Biochemistry, Istituto Superiore Sanità, Roma, Italy.

Published: August 1994

We have previously shown that saposin C (Sap C), a glucosylceramidase activator protein, interacts with phosphatidylserine (PS) large unilamellar vesicles (LUV), promoting the glucosylceramidase binding to the bilayer [(1993) FEBS Lett. 336, 159-162]. In the present paper the consequences of the Sap C interaction on the lipid organization of the vesicles are reported. It was found that Sap C perturbs the PS bilayer as shown by the release of an encapsulated fluorescent dye. Three different procedures, resonance energy transfer, gel filtration and electron microscopy, indicated that the activator protein is also able to make PS liposomes fuse. The effects of Sap C on PS vesicles were observed at low but not at neutral pH. The lipid composition of the bilayer also affected the Sap C-induced destabilization; in fact, the presence of PS in mixed LUV was essential for significant leakage to occur. These results demonstrate for the first time that Sap C is a protein capable of destabilizing and fusing acidic phospholipid-containing membranes in a pH-dependent fashion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-5793(94)00659-8DOI Listing

Publication Analysis

Top Keywords

activator protein
8
sap
6
saposin induces
4
induces ph-dependent
4
ph-dependent destabilization
4
destabilization fusion
4
fusion phosphatidylserine-containing
4
vesicles
4
phosphatidylserine-containing vesicles
4
vesicles saposin
4

Similar Publications

Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts.

JCI Insight

January 2025

Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.

View Article and Find Full Text PDF

Hypoxia is a major cause of pulmonary hypertension (PH) worldwide, and it is likely that interstitial pulmonary macrophages contribute to this vascular pathology. We observed in hypoxia-exposed mice an increase in resident interstitial macrophages, which expanded through proliferation and expressed the monocyte recruitment ligand CCL2. We also observed an increase in CCR2+ macrophages through recruitment, which express the protein thrombospondin-1 that functionally activates TGF-beta to cause vascular disease.

View Article and Find Full Text PDF

Ultrasound-Activated Copper Matrix Nanosonosensitizer for Cuproptosis-Based Synergy Therapy.

ACS Appl Bio Mater

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

Cuproptosis exhibits enormous application prospects in treatment. However, cuproptosis-based therapy is impeded by the limited intracellular copper ions, the nonspecific delivery, uncontrollable release, and chelation of endogenous overproduced glutathione (GSH). In this work, an ultrasound-triggered nanosonosensitizer (p-TiO-Cu(I)) was constructed for Cu(I) delivery, on-demand release, GSH consumption, and deeper tissue response.

View Article and Find Full Text PDF

Melatonin, renowned for regulating sleep-wake cycles, also exhibits notable anti-aging properties for the skin. Synthesized in the pineal gland and various tissues including the skin, melatonin's efficacy arises from its capacity to combat oxidative stress and shield the skin from ultraviolet (UV)-induced damage. Moreover, it curbs melanin production, thereby potentially ameliorating hyperpigmentation.

View Article and Find Full Text PDF

Glycosaminoglycans (GAGs) are essential bone extracellular matrix molecules that regulate osteoblast differentiation. Numerous studies have explored endogenous and exogenous GAG osteoanabolic activities using appropriate in vitro and in vivo models. However, GAGs' underlying the mechanism of action and structure-function relationships need to be elucidated in detail.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!