Autonomic effects of vestibular stimulation are important components of phenomena as diverse as acute vestibular dysfunction and motion sickness. However, the organization of neural circuits mediating these responses is poorly understood. This study presents evidence for direct vestibular nucleus projections to brain stem regions that mediate autonomic function. One group of albino rabbits received injections of Phaseolus vulgaris leucoagglutinin into the vestibular nuclei. The tracer was visualized immunocytochemically with standard techniques. Anterogradely labeled axons from the caudal medial vestibular nucleus (cMVN) and inferior vestibular nucleus (IVN) could be traced bilaterally to nucleus tractus solitarius (NTS). Fewer axons ended near the somata of neurons in the dorsal motor nucleus of the vagus nerve (DMX). A second group of rabbits received pressure or iontophoretic injections of cholera toxin B-HRP or Fluoro-Gold into a region including NTS and DMX. Retrogradely labeled neurons were observed bilaterally in the caudal half of cMVN and ipsilaterally in IVN. The labeled somata were small and they tended to occupy the center of cMVN in transverse sections. These previously unreported vestibular nucleus projections to NTS and DMX are a potential substrate for vestibular influences on autonomic function. In particular, they may contribute to both cardiovascular control during head movements (e.g., orthostatic reflexes) and autonomic manifestions of vestibular dysfunction, motion sickness and exposure to altered gravitational environments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00228409DOI Listing

Publication Analysis

Top Keywords

vestibular nucleus
20
nucleus projections
12
vestibular
10
nucleus
8
nucleus tractus
8
tractus solitarius
8
dorsal motor
8
motor nucleus
8
nucleus vagus
8
vagus nerve
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!