Recent studies on experimental animals showed that long term activation of the hypothalamo-pituitary-adrenal axis is associated with increased vasopressin (AVP) colocalization in paraventricular corticotropin-releasing hormone (CRH) neurons. In the present study we estimated the fraction of CRH neurons in which AVP is colocalized by double label immunocytochemistry in hypothalami of 10 control subjects of 21-91 years of age and 10 age-matched Alzheimer patients. CRH neurons in the paraventricular nucleus (PVN) of Alzheimer patients and control subjects showed similar age dependent increases in AVP colocalization. Based on this parameter, it seems that CRH neurons of Alzheimer patients are not overactivated as compared to age-matched controls, but e.g. changes in m-RNA for CRH should still be established.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2826.1994.tb00563.xDOI Listing

Publication Analysis

Top Keywords

alzheimer patients
16
crh neurons
16
colocalization paraventricular
8
paraventricular corticotropin-releasing
8
corticotropin-releasing hormone
8
avp colocalization
8
control subjects
8
neurons
5
crh
5
age increase
4

Similar Publications

Background: Neurodegeneration with Brain Iron Accumulation (NBIA) rarely manifests after the age of 50 years. The phenotype in these cases is most often parkinsonism.

Objectives: To present the case with the oldest age of NBIA onset reported so far.

View Article and Find Full Text PDF

Aim: Mild behavioral impairment (MBI) is a neurobehavioral prodrome to dementia with multiple phenotypic characteristics. To investigate the complex neurobiological substrate underlying MBI, we evaluated its association with a composite magnetic resonance imaging (MRI)-based measure of concomitant cerebrovascular disease (CeVD) and neurodegeneration; and the interaction effects of MBI and MRI scores on cognitive and clinical trajectory.

Methods: 253 dementia-free participants (mean age=71.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the leading cause of morbidity and mortality worldwide, as a result of cognitive decline and neurological dysfunction. In AD, reduced cerebral blood flow and impaired vascularization result from capillary bed degeneration and decreased angiogenesis, as observed in both patients and animal models. Physical exercise is recognized as a potential intervention to delay AD progression and reduce disease risk.

View Article and Find Full Text PDF

Tau aggregation plays a crucial role in the development of Alzheimer's disease (AD). Developing specific techniques that can isolate pathogenic tau from brain tissue is important for understanding tauopathies and advancing targeted therapies. Here, we develop photoaffinity small molecular probes and a novel method for tissue labeling and investigate their activity in interacting with tau in cells and AD patient brains.

View Article and Find Full Text PDF

The Alzheimer's disease (AD) continuum is characterized by amyloid and tau protein deposition, which is partly attributable to the dysfunction of the brain clearance system. However, the specific phase in the AD continuum wherein aberrant clearance is present remains unclear. This study aimed to assess noninvasive magnetic resonance imaging (MRI) indices related to brain clearance functions, such as choroid plexus volume (CPV), lateral ventricular volume (LVV), and the index of diffusivity along the perivascular space (ALPS index), across the Alzheimer's disease (AD) spectrum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!