Proton binding stoichiometry and kinetics of charge recombination were measured after single flash excitation in reaction centers from the purple photosynthetic bacterium, Rhodobacter sphaeroides strain R-26, where the native ubiquinone in the primary quinone acceptor site QA was removed and replaced by (benzo-, naphtho-, and anthra-) quinones of various structures and redox midpoint potentials. The observed proton binding stoichiometry was small (0.2-0.4 H+/QA-) and not specific to quinones in the acidic and neutral pH ranges. Above pH 9, however, significant differences were detected; reaction centers reconstituted by menadione failed to take up protons above pH 9.5. The pH dependence of the free energy change (stabilization) of the semiquinone was determined by integration of the proton uptake stoichiometry as a function of pH. Ubiquinone had the largest (100 meV at pH 5) and menadione the smallest (49 meV at pH 5) stabilization energy compared to those at very high (> 11) pH. In the case of the anthraquinone-reconstituted reaction center, acceptable agreement was obtained above pH 9 for the stabilization energies derived from energetic parameters of the thermally activated electron transfer (back reaction) and from proton binding stoichiometries. The stabilization at high pH could be attributed to a single protonatable amino acid, which might be either in the QB (secondary quinone) pocket (Glu L212) or in the vicinity of the QA binding domain (Tyr H40). It was shown that this residue had a negligible energy of interaction with bacteriopheophytin and that its coupling to the semiquinone was sensitive to the structure and physicochemical properties of QA.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00197a027DOI Listing

Publication Analysis

Top Keywords

reaction centers
12
proton binding
12
primary quinone
8
proton uptake
8
rhodobacter sphaeroides
8
binding stoichiometry
8
stabilization
5
proton
5
reaction
5
stabilization reduced
4

Similar Publications

Visibility, Physical Work Environment, and Stress in ICU Nurses.

J Nurs Adm

December 2024

Author Affiliations: Research Associate (Dr Keys), The Center for Health Design, Concord, California; National Senior Director (Dr Fineout-Overholt), Evidence-Based Practice and Implementation Science, at Ascension in St. Louis, MO.

Objective: Relationships among coworker and patient visibility, reactions to physical work environment, and work stress in ICU nurses are explored.

Background: Millions of dollars are invested annually in the building or remodeling of ICUs, yet there is a gap in understanding relationships between the physical layout of nursing units and work stress.

Methods: Using a cross-sectional, correlational, exploratory, predictive design, relationships among variables were studied in a diverse sample of ICU nurses.

View Article and Find Full Text PDF

Moisture-driven carbonation kinetics for ultrafast CO mineralization.

Proc Natl Acad Sci U S A

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.

CO mineralization, a process where CO reacts with minerals to form stable carbonates, presents a sustainable approach for CO sequestration and mitigation of global warming. While the crucial role of water in regulating CO mineralization efficiency is widely acknowledged, a comprehensive understanding of the underlying mechanisms remains elusive. This study employs a combined experimental and atomistic simulation approach to elucidate the intricate mechanisms governing moisture-driven carbonation kinetics of calcium-bearing minerals.

View Article and Find Full Text PDF

A single-component flavin-dependent halogenase, AetF, has emerged as an attractive biocatalyst for catalyzing halogenation. However, its flavin chemistry remains unexplored and cannot be predicted due to its uniqueness in sequence and structure compared to other flavin-dependent monooxygenases. Here, we investigated the flavin reactions of AetF using transient kinetics.

View Article and Find Full Text PDF

Investigation of Transformation Pathways of Polyfluoroalkyl Substances during Chlorine Disinfection.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States.

Recent regulations on perfluorinated compounds in drinking water underscore the need for a deeper understanding of the formation of perfluorinated compounds from polyfluoroalkyl substances during chlorine disinfection. Among the compounds investigated in this study, N-(3-(dimethylaminopropan-1-yl)perfluoro-1-hexanesulfonamide (N-AP-FHxSA) underwent rapid transformation during chlorination. Within an hour, it produced quantitative yields of various poly- and per-fluorinated products, including perfluorohexanoic acid (PFHxA).

View Article and Find Full Text PDF

Objective: To compare the 3-year outcomes of the modified minimally invasive Ponto surgery (m-MIPS) to both the original MIPS (o-MIPS) and linear incision technique with soft tissue preservation (LIT-TP) for inserting bone-anchored hearing implants (BAHIs).

Study Design: Prospective study with three patient groups: m-MIPS, o-MIPS, and LIT-TP.

Setting: Tertiary referral center.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!