The purpose of this study was to determine whether metabolites produced by glycolysis during ischemia significantly contribute to myocardial injury of hypertrophied hearts. The accumulation of glycolytic metabolites during ischemia was reduced by means of glycogen reduction or by treatment with the glycolytic inhibitor, 2-deoxy-D-glucose (2-DG) before ischemia. Hearts from aortic-banded (Band) and sham-operated (Sham) rats (8 wk postop) were isolated, perfused with Krebs buffer, and had a left ventricular (LV) balloon to measure developed pressure. A 15-min perfusion with hypoxic buffer (glycogen reduction, GR) or a 10-min perfusion with 10 mM 2-DG (glycolytic inhibition) was followed by 25 min global, normothermic, no-flow ischemia and 30 min normoxic reperfusion. Heart weights were greater in Band than Sham [2.76 +/- 0.06 vs. 1.5 +/- 0.04 (mean +/- SE) g; P < 0.001]. GR and 2-DG each resulted in reduced ATP levels measured at the beginning of ischemia in both Band and Sham groups compared with untreated groups, but there were no differences among groups after 25 min of ischemia. Myocardial lactate levels at the end of ischemia were significantly reduced in both Band and Sham hearts with GR or 2-DG compared with untreated controls. Recovery of LV function after ischemia and reperfusion was significantly improved in Band after GR (206% increase) and after 2-DG treatment (126% increase) compared with their respective untreated controls. Diastolic dysfunction during reperfusion was ameliorated in Band by preischemic GR but not by 2-DG treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.1994.267.1.H66DOI Listing

Publication Analysis

Top Keywords

glycogen reduction
12
band sham
12
glycolytic inhibition
8
ischemia
8
ischemia reduced
8
compared untreated
8
untreated controls
8
2-dg
6
band
6
preischemic glycogen
4

Similar Publications

Voltage-gated Na+ (Nav) channels are the primary determinants of the action potential in excitable cells. Nav channels rely on a wide and diverse array of intracellular protein-protein interactions (PPIs) to achieve their full function. Glycogen synthase kinase 3 β (GSK3β) has been previously identified as a modulator of Nav1.

View Article and Find Full Text PDF

Berberine Improves Glucose and Lipid Metabolism in Obese Mice through the Reduction of IRE1/GSK-3β Axis-Mediated Inflammation.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Endocrinology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, No. 130 Renmin Middle Road, Jiangyin City, Jiangsu Province, 214413, China.

Introduction: Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.

View Article and Find Full Text PDF

Arsenic exposure can induce liver insulin resistance (IR) and diabetes (DM), but the underlying mechanisms are not yet clear. Circular RNAs (circRNAs) are involved in the regulation of the onset of diabetes, especially in the progression of IR. This study aimed to investigate the role of circRNAs in arsenic-induced hepatic IR and its underlying mechanism.

View Article and Find Full Text PDF

This study presents a comprehensive examination of the physiological adaptations of white shrimp (Penaeus vannamei) to low-salinity conditions and evaluates the effects of supplementing dietary glucose on disease resistance. Compared to the control group, shrimp cultured at a salinity of 4 psu exhibit significantly elevated expression levels of adenosine 5'-monophosphate-activated protein kinase (AMPK) in the hepatopancreas, which leads to increased energy expenditure and a corresponding reduction in resistance to infection by Vibrio alginolyticus. The suppression of AMPK via dsAMPK treatment markedly enhances disease resistance.

View Article and Find Full Text PDF

The present study evaluated the potential of Ashoka, Saraca asoca leaf meal (SLM), in carp diets following fermentative processing with a tannase-producing fish gut bacterium, Bacillus subtilis (KP765736). The processing of SLM led to a significant (P < 0.05) reduction in major anti-nutrients (tannin, trypsin inhibitor, and crude fiber), while crude protein content increased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!