Reactive oxygen metabolites have been reported to affect platelet aggregation. However, this phenomenon is still poorly understood. In the present study we investigated the effects of superoxide radical and hydrogen peroxide (H2O2) on platelet function in vitro and correlated those effects to possible changes of platelet concentrations of cyclic nucleotides and thromboxane, since these systems play a key role in the response of platelets to activating stimuli. Human platelets were exposed to xanthine-xanthine oxidase (X-XO), a system that generates both superoxide radicals and H2O2. Sixty seconds of incubation with X-XO impaired aggregation in response to ADP (by 48%), collagen (by 71%), or the thromboxane mimetic U-46619 (by 50%). This effect was reversible and occurred in the absence of cell damage. Impairment of aggregation in platelets exposed to X-XO was due to H2O2 formation, since it was prevented by catalase but not by superoxide dismutase. Similarly, incubation with the pure H2O2 generator glucose-glucose oxidase also markedly inhibited ADP-induced platelet aggregation in a dose-dependent fashion. Impaired aggregation by H2O2 was accompanied by a > 10-fold increase in platelet concentrations of guanosine 3',5'-cyclic monophosphate (cGMP), whereas adenosine 3',5'-cyclic monophosphate levels remained unchanged. The inhibitory role of increased cGMP formation was confirmed by the finding that H2O2-induced impairment of platelet aggregation was largely abolished when guanylate cyclase activation was prevented by incubating platelets with the guanylate cyclase inhibitor, LY-83583. Different effects were observed when arachidonic acid was used to stimulate platelets. Exposure to a source of H2O2 did not affect aggregation to arachidonate. Furthermore, in the absence of exogenous H2O2, incubation with catalase, which had no effects on platelet response to ADP, collagen, or U-46619, virtually abolished platelet aggregation and markedly reduced thromboxane B2 production (to 44% of control) when arachidonic acid was used as a stimulus. In conclusion, our data demonstrate that H2O2 may exert complex effects on platelet function in vitro. Low levels of endogenous H2O2 seem to be required to promote thromboxane synthesis and aggregation in response to arachidonic acid. In contrast, exposure to larger (but not toxic) concentrations of exogenous H2O2 may inhibit aggregation to several agonists via stimulation of guanylate cyclase and increased cGMP formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.1994.267.1.H308 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Cytobiology and Proteomics, Medical University of Lodz, 92-215 Lodz, Poland.
Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece.
Platelet aggregation and inflammation play a crucial role in atherothrombosis. Wine contains micro-constituents of proper quality and quantity that exert cardioprotective actions, partly through inhibiting platelet-activating factor (PAF), a potent inflammatory and thrombotic lipid mediator. However, wine cannot be consumed extensively due to the presence of ethanol.
View Article and Find Full Text PDFPharmaceutics
December 2024
School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
Traumatic hemorrhage and infection are major causes of mortality in wounds caused by battlefield injuries, hospital procedures, and traffic accidents. Developing a multifunctional nano-drug capable of simultaneously controlling bleeding, preventing infection, and promoting wound healing is critical. This study aimed to design and evaluate a nanoparticle-based solution to address these challenges effectively.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Vascular Surgery, Medical School, University of Pécs, H-7624 Pécs, Hungary.
: Peripheral artery disease (PAD) is a prevalent vascular condition characterized by arterial narrowing, which impairs blood flow and manifests as intermittent claudication, a pain or cramping sensation induced by physical activity or ambulation. Walking distance is a crucial clinical indicator of peripheral artery disease, and it correlates with the disease severity and risk of mortality. It reflects the severity of the disease, with reduced mobility indicating an increased risk of morbidity.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
Platelet cells are essential to maintain haemostasis and play a critical role in thrombosis. They swiftly respond to vascular injury by adhering to damaged vessel surfaces, activating signalling pathways, and aggregating with each other to control bleeding. This dynamic process of platelet activation is intricately coordinated, spanning from membrane receptor maturation to intracellular interactions to whole-cell responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!