The barn owl's inferior colliculus contains a retina-like map of space on which a sound generates a focus of activity whose position corresponds to the location of the sound source. When there is more than one source of sound, the sound waves sum and may generate spurious binaural cues that degrade the auditory image. We investigated the signal conditions under which neurons in the owl's auditory space map are able to resolve two simultaneously active sound sources. We recorded from space map neurons responding to sounds from a pair of speakers separated in azimuth by 45 degrees and mounted on a rotatable arm. Stimuli consisted of a sum of sinusoids or pseudorandom noise bursts emitted simultaneously and at equal overall levels. The characteristics of the sounds in each speaker were varied, and the neuron's response was plotted as a function of the speaker pair's position. When the speakers emitted different sets of summed sinusoids, the cells responded to each speaker separately; that is, the cells were able to resolve two separate targets. However, when the speakers emitted identical summed sinusoids generating binaural cues that were identical to those of a single phantom source between the two speakers, the neurons responded when the speakers were on either side of their receptive fields. By manipulating the amplitude at which each speaker emitted the various frequencies, we could control the position, number, and size of the phantom sources detected by the cell. The cells also resolved two separate sources when they emitted noise bursts that were statistically independent or temporally reversed versions of one another. Since the overall spectra of such waveforms are identical, we suggest that the space map relies on differences between noise bursts that exist over brief time spans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6577175 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.14-08-04780.1994 | DOI Listing |
Polymers (Basel)
January 2025
Rheology Department, Polymat Institute, University of the Basque Country, 20018 Donostia-San Sebastian, Euskadi, Spain.
This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.
View Article and Find Full Text PDFImages are important information carriers in our lives, and images should be secure when transmitted and stored. Image encryption algorithms based on chaos theory emerge in endlessly. Based on previous various chaotic image fast encryption algorithms, this paper proposes a color image sector fast encryption algorithm based on one-dimensional composite sinusoidal chaotic mapping.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Department of Physics and Fujian Provincial Key Laboratory of Low Dimensional Condensed Matter Physics, Xiamen University, Xiamen 361005, China.
We show that the theory of quantum statistical mechanics is a special model in the framework of the quantum probability theory developed by mathematicians, by extending the characteristic function in the classical probability theory to the quantum probability theory. As dynamical variables of a quantum system must respect certain commutation relations, we take the group generated by a Lie algebra constructed with these commutation relations as the bridge, so that the classical characteristic function defined in a Euclidean space is transformed to a normalized, non-negative definite function defined in this group. Indeed, on the quantum side, this group-theoretical characteristic function is equivalent to the density matrix; hence, it can be adopted to represent the state of a quantum ensemble.
View Article and Find Full Text PDFParasit Vectors
January 2025
Faculty of Geography, Environmental Informatics, University of Marburg, Deutschhausstraße 12, 35032, Marburg, Hessen, Germany.
Background: Ticks are the primary vectors of numerous zoonotic pathogens, transmitting more pathogens than any other blood-feeding arthropod. In the northern hemisphere, tick-borne disease cases in humans, such as Lyme borreliosis and tick-borne encephalitis, have risen in recent years, and are a significant burden on public healthcare systems. The spread of these diseases is further reinforced by climate change, which leads to expanding tick habitats.
View Article and Find Full Text PDFNanoscale
January 2025
Dept. of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA.
Identifying facile strategies for hierarchically structuring crystalline porous materials is critical for realizing diffusion length scales suitable for broad applications. Here, we elucidate synthesis-structure-function relations governing how room temperature catalytic conditions can be exploited to tune covalent organic framework (COF) growth and thereby access unique hierarchical morphologies without the need to introduce secondary templates or structure directing molecules. Specifically, we demonstrate how scandium triflate, an efficient catalyst involved in the synthesis of imine-based COFs, can be exploited as an effective growth modifier capable of selectively titrating terminal amines on 2D COF layers to facilitate anisotropic crystal growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!