Compressed air, and more recently hyperbaric oxygen, have been used and misused in medical treatment for more than 300 years. Advances in physiology have led to rational protocols for hyperbaric oxygen use. Hyperbaric oxygen will enhance wound healing by fibroblast and capillary proliferation, suppress infection, reduce edema, reverse CNS damage from carbon monoxide and cyanide poisoning, and reduce clostridial alpha toxins. Monoplace and multiplace chambers are used for treatment during which EKG and oxygen tissue monitoring, as well as hemodynamic and respiratory support, can be continued, iatrogenic air embolism and diving decompression sickness demand immediate treatment. Investigative uses of adjunct therapy for several other clinical problems include treatment of MS, acute spinal cord injuries, and acute MI. Specific indications agreed on by the Undersea and Hyperbaric Medicine Society are recognized by most third-party payers including Medicare, Champus, and HMSA. Hyperbaric medicine remains a fertile area for basic physiologic investigation and outcomes research.
Download full-text PDF |
Source |
---|
J Intensive Care Med
January 2025
Anand Pharmacy College, Anand, Gujarat, India.
Hyperbaric Oxygen Therapy (HBOT) is a medical treatment that involves administering 100% oxygen at increased atmospheric pressure to enhance oxygen delivery to tissues. Initially developed for decompression sickness, HBOT has since been utilized for a wide range of medical conditions, including severe infections, non-healing wounds, and, more recently, COVID-19. This review explores the historical development of HBOT, its principles, its emerging role in the management of and its outcome as treatment in COVID-19, particularly in mitigating inflammation, hypoxemia, and oxidative stress.
View Article and Find Full Text PDFKaohsiung J Med Sci
January 2025
Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
BMC Med Genomics
January 2025
Department of Anaesthesiology, Centre of Head and Orthopedics, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, Copenhagen, 2100, Denmark.
Background: Sepsis and shock are common complications of necrotising soft tissue infections (NSTI). Sepsis encompasses different endotypes that are associated with specific immune responses. Hyperbaric oxygen (HBO) treatment activates the cells oxygen sensing mechanisms that are interlinked with inflammatory pathways.
View Article and Find Full Text PDFJ Stroke Cerebrovasc Dis
January 2025
Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China; Department of Ophthalmology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China. Electronic address:
Backgrounds/aims: Central retinal artery occlusion (CRAO) is a vision-devastating emergency. However, widely-acknowledged treatment consensus is lacking and prehospital delays commonly occur. Hence, we aimed to investigate the visual outcomes of conservative treatments (CT), local intra-arterial fibrinolysis (LIF) and hyperbaric oxygen (HBO) therapy for non-arteritic CRAO (NA-CRAO) patients beyond the conventional time window.
View Article and Find Full Text PDFPLoS One
January 2025
Hyperbaric Medicine Unit, Toronto General Hospital, Toronto, Ontario, Canada.
Background: Hyperbaric oxygen therapy (HBOT) is well established as a treatment for various medical conditions. However, it poses a risk of oxygen toxicity, which can cause seizures particularly in individuals with pre-existing seizure disorders. Consequently, seizure disorders are considered a relative contraindication to HBOT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!