We have analyzed the role of RNA editing in the correction of mismatched base pairs in tRNA secondary structures in mitochondria of the flowering plant Oenothera berteriana. Comparison of genomic and cDNA sequences from unprocessed primary transcripts of the newly characterized genes for tRNA(Cys), tRNA(Asn) and tRNA(Ile) and the previously described gene for tRNA(Phe) revealed single nucleotide discrepancies in the tRNA(Cys) and tRNA(Phe) sequences. While the change in the anticodon stem of tRNA(Cys) alters a C-T to a T-T mismatch, the nucleotide transition in the tRNA(Phe) restores a conventional T-A Watson-Crick base pair, replacing a C-A mismatch in the acceptor stem. Since both nucleotide alterations are conversions from genomic cytidines to thymidines in the cDNA (uridines in the tRNAs), they are attributed to RNA editing, which is observed in nearly all mRNAs from plant mitochondria.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00280188DOI Listing

Publication Analysis

Top Keywords

rna editing
12
oenothera berteriana
8
trnaphe
4
editing trnaphe
4
trnacys
4
trnaphe trnacys
4
trnacys mitochondria
4
mitochondria oenothera
4
berteriana initiated
4
initiated precursor
4

Similar Publications

Transthyretin Cardiac Amyloidosis: Current and Emerging Therapies.

Curr Cardiol Rep

January 2025

The Pauley Heart Center, Virginia Commonwealth University, 1200 East Broad Street West Hospital, 8th Floor, West Wing, Richmond, VA, 23231, USA.

Purpose Of Review: In this article, we describe current and newer TTR stabilizers, TTR silencers which include small interfering RNA agents (siRNA), antisense oligonucleotides (ASO) and CRISPR-Cas9 gene editing, and TTR depleters, which investigates the use of monoclonal antibodies to remove amyloid fibril deposits for patients with advanced disease.

Recent Findings: Once thought to be a rare and fatal condition, increased recognition, improved non-invasive diagnostic tools, and the explosive development of novel therapies, has transformed the landscape of transthyretin amyloid cardiomyopathy (ATTR-CM). Advances in cardiac imaging with respect to echocardiography, cardiac magnetic resonance imaging (CMR), and radionuclide bone scintigraphy has increased the diagnosis of ATTR-CM over the last twenty years.

View Article and Find Full Text PDF

Phosphorothioate (PS) modifications in single-guided RNA (sgRNA) are crucial for genome editing applications using the CRISPR/Cas9 system. These modifications may enhance sgRNA stability, pharmacokinetics, and binding to targets, thereby facilitating the desired genetic alterations. Incorporating multiple PS groups at varying positions may introduce chiral centers into the sgRNA backbone, resulting in a complex mixture of constitutional- and stereoisomers that challenges current analytical capabilities for reliable identification and quantification.

View Article and Find Full Text PDF

Gene editing technologies, particularly clustered regularly interspersed short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins, have revolutionized the ability to modify gene sequences in living cells for therapeutic purposes. Delivery of CRISPR/Cas ribonucleoprotein (RNP) is preferred over its DNA and RNA formats in terms of gene editing effectiveness and low risk of off-target events. However, the intracellular delivery of RNP poses significant challenges and necessitates the development of non-viral vectors.

View Article and Find Full Text PDF

Dynamic changes in DNA methylation are prevalent during the progression of breast cancer. However, critical alterations in aberrant methylation and gene expression patterns have not been thoroughly characterized. Here, we utilized guide positioning sequencing (GPS) to conduct whole-genome DNA methylation analysis in a unique human breast cancer progression model: MCF10 series of cell lines (representing benign/normal, atypical hyperplasia, and metastatic carcinoma).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!