The selection of T cell clones with mutations in the hypoxanthine guanine phosphoribosyltransferase (hprt) gene has been used to isolate T cells reactive to myelin basic protein (MBP) in patients with multiple sclerosis (MS). These T cell clones are activated in vivo, and are not found in healthy individuals. The third complementarity determining regions (CDR3) of the T cell receptor (TCR) alpha and beta chains are the putative contact sites for peptide fragments of MBP bound in the groove of the HLA molecule. The TCR V gene usage and CDR3s of these MBP-reactive hprt-T cell clones are homologous to TCRs from other T cells relevant to MS, including T cells causing experimental allergic encephalomyelitis (EAE) and T cells found in brain lesions and in the cerebrospinal fluid (CSF) of MS patients. In vivo activated MBP-reactive T cells in MS patients may be critical in the pathogenesis of MS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC296287 | PMC |
http://dx.doi.org/10.1172/JCI117295 | DOI Listing |
Biotechnol Bioeng
January 2025
Bioprocess Research and Development (BRD), WuXi Biologics, Shanghai, China.
Serving as a dedicated process analytical technology (PAT) tool for biomass monitoring and control, the capacitance probe, or dielectric spectroscopy, is showing great potential in robust pharmaceutical manufacturing, especially with the growing interest in integrated continuous bioprocessing. Despite its potential, challenges still exist in terms of its accuracy and applicability, particularly when it is used to monitor cells during stationary and decline phases. In this study, data pre-processing methods were first evaluated through cross-validation, where the first-order derivative emerged as the most effective method to diminish variability in prediction accuracy across different training datasets.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Johns Hopkins Biomedical Engineering; Johns Hopkins University Department of Molecular Biology and Genetics, Baltimore, Maryland, USA; Johns Hopkins University Department of Medicine, Division of Infectious Disease, Baltimore, Maryland, USA. Electronic address:
Chinese Hamster Ovary (CHO) cells produce monoclonal antibodies and other biotherapeutics at industrial scale. Despite their ubiquitous nature in the biopharmaceutical industry, little is known about the behaviors of individual transfected clonal CHO cells. Most CHO cells are assessed on their stability, their ability to produce the protein of interest over time.
View Article and Find Full Text PDFJ Med Virol
January 2025
State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
Coronaviruses (CoVs) pose a significant threat to human health, as demonstrated by the COVID-19 pandemic. The large size of the CoV genome (around 30 kb) represents a major obstacle to the development of reverse genetics systems, which are invaluable for basic research and antiviral drug screening. In this study, we established a rapid and convenient method for generating reverse genetic systems for various CoVs using a bacterial artificial chromosome (BAC) vector and Gibson DNA assembly.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Wurundjeri Country, Melbourne, Australia.
Both intrinsic and extrinsic mechanisms underpin the profound intertumoral heterogeneity in breast cancer. Increasing evidence suggests that the intrinsic characteristics of breast epithelial precursor cells may influence tumour phenotype. These "cells-of-origin" of cancer preside in normal breast tissue and are uniquely susceptible to mutagenesis upon exposure to distinct oncogenic stimuli.
View Article and Find Full Text PDFNat Methods
January 2025
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
In vivo lineage tracing holds great potential to reveal fundamental principles of tissue development and homeostasis. However, current lineage tracing in humans relies on extremely rare somatic mutations, which has limited temporal resolution and lineage accuracy. Here, we developed a generic lineage-tracing tool based on frequent epimutations on DNA methylation, enabled by our computational method MethylTree.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!