Irreversible formation of pseudohyphae by haploid Saccharomyces cerevisiae.

FEMS Microbiol Lett

School of Pure and Applied Biology, University of Wales College of Cardiff, UK.

Published: June 1994

Culturing haploid strains of Saccharomyces cerevisiae in liquid minimal medium with 2% ethanol and 2% leucine resulted in the formation of long anucleate pseudohyphae. This occurred only with the combination of ethanol as carbon source and leucine as nitrogen source and was independent of mating type. The transition to a pseudohyphal form observed under these conditions appears to be irreversible. These findings further extend our view of the developmental alternatives in this important model eukaryote.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.1994.tb06874.xDOI Listing

Publication Analysis

Top Keywords

saccharomyces cerevisiae
8
irreversible formation
4
formation pseudohyphae
4
pseudohyphae haploid
4
haploid saccharomyces
4
cerevisiae culturing
4
culturing haploid
4
haploid strains
4
strains saccharomyces
4
cerevisiae liquid
4

Similar Publications

Mismatch repair (MMR) is a highly conserved DNA repair pathway that recognizes mispairs that occur spontaneously during DNA replication and coordinates their repair. In Saccharomyces cerevisiae, Msh2-Msh3 and Msh2-Msh6 initiate MMR by recognizing and binding insertion deletion loops (in/dels) up to ∼ 17 nucleotides (nt.) and base-base mispairs, respectively; the two complexes have overlapping specificity for small (1-2 nt.

View Article and Find Full Text PDF

Engineering Saccharomyces cerevisiae for medical applications.

Microb Cell Fact

January 2025

Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.

Background: During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid.

Main Text: In this review, we scrutinize the main applications of engineered S.

View Article and Find Full Text PDF

Capturing eukaryotic ribosome dynamics in situ at high resolution.

Nat Struct Mol Biol

January 2025

Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.

Many protein complexes are highly dynamic in cells; thus, characterizing their conformational changes in cells is crucial for unraveling their functions. Here, using cryo-electron microscopy, 451,700 ribosome particles from Saccharomyces cerevisiae cell lamellae were obtained to solve the 60S region to 2.9-Å resolution by in situ single-particle analysis.

View Article and Find Full Text PDF

Insights into phosphatidic acid phosphatase and its potential role as a therapeutic target.

Adv Biol Regul

January 2025

Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, 08901, USA.

Phosphatidic acid phosphatase, a conserved eukaryotic enzyme that catalyzes the Mg-dependent dephosphorylation of phosphatidic acid to produce diacylglycerol, has emerged as a vital regulator of lipid homeostasis. By controlling the balance of phosphatidic acid and diacylglycerol, the enzyme governs the use of the lipids for synthesis of the storage lipid triacylglycerol and the membrane phospholipids needed for cell growth. The mutational, biochemical, and cellular analyses of yeast phosphatidic acid phosphatase have provided insights into the structural determinants of enzyme function with the understanding of its regulation by phosphorylation and dephosphorylation.

View Article and Find Full Text PDF

De novo biosynthesis of mogroside V by multiplexed engineered yeasts.

Metab Eng

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China. Electronic address:

High sugar intake has become a global health concern due to its association with various diseases. Mogroside V (MG-V), a zero-calorie sweetener with multiple medical properties, is emerging as a promising sugar substitute. However, its application is hindered by low natural abundance and the inefficiency of conventional plant extraction methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!