The adenovirus single-stranded DNA binding protein (Ad DBP) is a multifunctional protein required, amongst other things, for DNA replication and transcription control. It binds to single- and double-stranded DNA, as well as to RNA, in a sequence-independent manner. Like other single-stranded DNA binding proteins, it binds ssDNA, cooperatively. We report the crystal structure, at 2.6 A resolution, of the nucleic acid binding domain. This domain is active in DNA replication. The protein contains two zinc atoms in different, novel coordinations. The zinc atoms appear to be required for the stability of the protein fold rather than being involved in direct contacts with the DNA. The crystal structure shows that the protein contains a 17 amino acid C-terminal extension which hooks onto a second molecule, thereby forming a protein chain. Deletion of this C-terminal arm reduces cooperativity in DNA binding, suggesting a hook-on model for cooperativity. Based on this structural work and mutant studies, we propose that DBP forms a protein core around which the single-stranded DNA winds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC395187 | PMC |
http://dx.doi.org/10.1002/j.1460-2075.1994.tb06598.x | DOI Listing |
Cell Mol Life Sci
January 2025
Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance.
View Article and Find Full Text PDFEpigenetics
December 2025
Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm.
View Article and Find Full Text PDFSci China Life Sci
January 2025
State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
The gut microbiota plays key roles in host health by shaping the host immune responses through their metabolites, like indole derivatives from tryptophan. However, the direct role of these indole derivatives in macrophage fate decision and the underlying mechanism remains unknown. Here, we found that bacterial indole-3-propionic acid (IPA) downregulates interleukin-1beta (IL-1β) production in M1 macrophages through inhibition of nuclear factor-kappa B (NF-κB) signaling.
View Article and Find Full Text PDFSci Rep
January 2025
Sexually Transmitted and Bloodborne Infections Surveillance and Molecular Epidemiology, Sexually Transmitted and Bloodborne Infections Division at the JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, R3E 3L5, Canada.
Human Immunodeficiency Virus Type 1 (HIV) set-point viral load is a strong predictor of disease progression and transmission risk. A recent genome-wide association study in individuals of African ancestries identified a region on chromosome 1 significantly associated with decreased HIV set-point viral load. Knockout of the closest gene, CHD1L, enhanced HIV replication in vitro in myeloid cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!