The cascade of events within the first few minutes of T cell stimulation has been well characterized. Although many second messengers have been shown to be necessary and sufficient for T cell activation in a number of model systems, the rate-limiting step in peripheral T cells has not been demonstrated. To model effective versus ineffective CD3-mediated stimulation in peripheral T cells, we used two anti-CD3 mAbs that differ in their ability to stimulate purified T cells: OKT3, which causes early second messenger generation but is unable to activate T cells without a second signal, and 64.1, which stimulates T cell proliferation on its own. We found that tyrosine kinase activity was similar for both mAbs over a period of hours. However, the inositol phosphate response was stronger for 64.1 than for OKT3. To tie these events to gene activation, we measured NF-kappa B and NF-AT activity in the nucleus after anti-CD3 stimulation. Both stimuli induced the appearance of the NF-kappa B components (c-Rel, p65 (RelA), and p50 (NF-kappa B1)) and NF-kappa B DNA binding activity in the nucleus. However, only 64.1 induced NF-AT in the nucleus, correlating with its ability to activate T cells. Thus, NF-AT induction and IL-2 secretion were correlated with the levels of inositol phosphate release but not with gross levels of tyrosine kinase activity induced late following the response. On the other hand, NF-kappa B induction and IL-2 receptor expression occurred even with the smaller second messenger response generated by OKT3.

Download full-text PDF

Source
http://dx.doi.org/10.1006/cimm.1994.1213DOI Listing

Publication Analysis

Top Keywords

inositol phosphate
12
tyrosine kinase
12
kinase activity
12
phosphate release
8
il-2 secretion
8
nf-at induction
8
peripheral cells
8
second messenger
8
activate cells
8
activity nucleus
8

Similar Publications

Phytate in plants (inositol phosphates, InsPs) affects mineral bioavailability. However, methods for their quantification may lead to variable results, and some are nonspecific (spectrophotometric techniques). In this study, ion-pair high-performance liquid chromatography (HPLC) was coupled with post-column derivatization to allow fluorescence detection (FLD, λ324/λ364 nm) of InsPs.

View Article and Find Full Text PDF

Personalization of a computational systems biology model of blood platelet calcium signaling.

Biomed Khim

December 2024

Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

Anuclear blood cells, platelets, are the basis for the formation of blood clots in human vessels. While antiplatelet therapy is most often used after ischemic events, there is a need for its personalization due to the limited effectiveness and risks of bleeding. Previously, we developed a series of computational models to describe intracellular platelet signaling and a set of experimental methods to characterize the platelets of a given patient.

View Article and Find Full Text PDF

Inositol phosphates dynamically enhance stability, solubility and catalytic activity of mTOR.

J Biol Chem

December 2024

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232; Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232. Electronic address:

Mechanistic Target of Rapamycin (mTOR) binds the small metabolite inositol hexakisphosphate (IP) as shown in structures of mTOR, however it remains unclear if IP, or any other inositol phosphate species, function as an integral structural element(s) or catalytic regulator(s) of mTOR. Here, we show that multiple, exogenously added inositol phosphate species can enhance the ability of mTOR and mTORC1 to phosphorylate itself and peptide substrates in in vitro kinase reactions, with the higher order phosphorylated species being more potent (IP=IP>IP>>IP). IP increased the V and decreased the apparent K of mTOR for ATP.

View Article and Find Full Text PDF

Dietary Phytic Acid, Dephytinization, and Phytase Supplementation Alter Trace Element Bioavailability-A Narrative Review of Human Interventions.

Nutrients

November 2024

Laboratory of Clinical Nutrition and Dietetics, Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42100 Trikala, Greece.

Background: Phytic acid is abundant in plant-based diets and acts as a micronutrient inhibitor for humans and non-ruminant animals. Phytases are enzymes that break down phytic acid, releasing micronutrients and enhancing their bioavailability, particularly iron and zinc. Deficiencies in iron and zinc are significant public health problems, especially among populations with disease-associated malnutrition or those in developing countries consuming phytic acid-rich diets.

View Article and Find Full Text PDF

Exploring dietary methods to alter microbial communities and metabolic functions is becoming an increasingly fascinating strategy for improving health. Copra meal hydrolysate (CMH) is alternatively used as a gut health supplement. However, the functional diversity and metabolic activities in gut microbiome in relation to CMH treatment remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!