A plasmid carrying a DNA fragment of hepatitis B virus, coding for the pre-S2 and the entire S region of the surface antigen (HBsAg), placed under the control of the promoter of the human 70 kDa heat shock protein gene (hsp70), was introduced into Line 6, a recombinant cell line that was selected from NIH-3T3 cells previously transfected with a similar construct coding for the human growth hormone cDNA gene (chGH) and with the plasmid pEJ carrying the Ha-rasEJ activated cellular oncogene. The resulting cell line, EMS8, expressed: (1) hsp70/HBsAg and hsp70/hGH hybrid genes, (2) the human Ha-rasEJ oncogene, and (3) the neomycin resistance gene, the two last plasmid markers being used for cell selection. EMS8 cells were able to carry out post-translational modifications of the middle M and the major S envelope proteins of HBV, such as assembly and glycosylation. Accordingly, the cells synthesized and secreted both free and glycosylated M and S viral proteins, and the human growth hormone protein. In addition concomitant expression of HBsAg and hGH proteins as well as their mRNA were detected in EMS8 cells at least up to 72 hr after heat induction instead of 24 hr in the case of hGH in Line 6 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00754460DOI Listing

Publication Analysis

Top Keywords

human growth
12
growth hormone
12
heat shock
8
hepatitis virus
8
surface antigen
8
ems8 cells
8
human
5
cells
5
concomitant cellular
4
cellular expression
4

Similar Publications

Background: The literature is equivocal as to whether the predicted negative mental health impact of the COVID-19 pandemic came to fruition. Some quantitative studies report increased emotional problems and depression; others report improved mental health and well-being. Qualitative explorations reveal heterogeneity, with themes ranging from feelings of loss to growth and development.

View Article and Find Full Text PDF

: This study aimed to explore how the microarchitectural features of lacunae and perilacunar zones impact the biomechanics of microdamage accumulation in cortical bone, crucial for understanding bone disorders' pathogenesis and developing preventive measures. : Utilizing the phase field finite element method, the study analyzed three bone unit models with varying microarchitecture: one without lacunae, one with lacunae and one including perilacunar zones, to assess their effects on cortical bone's biomechanical properties. : The presence of lacunae was found to increase microcrack initiation risk, acting as nucleation points and accelerating microcrack propagation.

View Article and Find Full Text PDF

Bacterial infections pose a serious threat to human health. For many years, there has been a search for materials that would inhibit their development. It was decided to take a closer look at various elastomeric materials with the addition of chitosan.

View Article and Find Full Text PDF

Toll-like receptor (TLRs) activation in multiple myeloma (MM) cells induces heterogeneous functional responses including cell growth and proliferation, survival or apoptosis. These effects have been suggested to be partly due to increase in secretion of cytokines such as IL-6 or IFNα among others from MM cells following TLR activation. However, whether triggering of these receptors also modulates production of immunoglobulin free light chains (FLCs), which largely contribute to MM pathology, has not been investigated in MM cells before.

View Article and Find Full Text PDF

Objective: Aim: Testing Cordia myxa extract on colon cancer cell line and caspase-3 gene and COX-2 protein expression.

Patients And Methods: Materials and Methods: This study used Cordia myxa ethanolic extract at various dosages on SW480 cells. Cell proliferation was measured using MTT, also examined effect of Cordia myxa extract on caspase-3 gene expression using quantitative real-time polymerase chain reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!