Effects of monovalent cations on cytochrome P-450 camphor. Evidence for preferential binding of potassium.

FEBS Lett

INSERM-INRA U310, Institut de Biologie Physico-Chimique, Paris, France.

Published: June 1994

Binding of monovalent cations of increasing ionic radius to ferric cytochrome P-450cam was measured. Potassium has the highest affinity for the cation binding site observed in the X-ray crystallographic structure with Kdcat = 12 mM, compared with the smaller cation lithium, (Kdcat = 37 mM) and the larger cation cesium (Kd cat = 20 mM). Coupling between cation binding and camphor binding is established by the observation of a linear relationship between the corresponding binding free energies. Potassium binding favours a conformational change of tyrosine 96 which increases the affinity of the protein for camphor and fully dehydrates the active site.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-5793(94)00545-1DOI Listing

Publication Analysis

Top Keywords

monovalent cations
8
potassium binding
8
cation binding
8
binding
7
effects monovalent
4
cations cytochrome
4
cytochrome p-450
4
p-450 camphor
4
camphor evidence
4
evidence preferential
4

Similar Publications

Ion permeability profiles of renal paracellular channel-forming claudins.

Acta Physiol (Oxf)

February 2025

Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Aim: Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins.

View Article and Find Full Text PDF

Impact of ions, pH and the nature of substrate on the structure and activity of a robust single-stranded DNA binding (SSB)-like protein from Phi11.

Arch Microbiol

January 2025

Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.

The gene gp13 in bacteriophage Phi11 has been annotated as a Single-Stranded DNA binding protein (SSB protein, GenBank accession no. NC_004615.1).

View Article and Find Full Text PDF

Enhanced Prediction of CO-Brine Interfacial Tension at Varying Temperature Using a Multibranch-Structure-Based Neural Network Approach.

Langmuir

January 2025

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116023, P. R. China.

Interfacial tension () between CO and brine depends on chemical components in multiphase systems, intricately evolving with a change in temperature. In this study, we developed a convolutional neural network with a multibranch structure (MBCNN), which, in combination with a compiled data set containing measurement data of 1716 samples from 13 available literature sources at wide temperature and pressure ranges (273.15-473.

View Article and Find Full Text PDF

Ultramicroporous Tröger's Base Framework Membranes With Ionized Sub-nanochannels for Efficient Acid/Alkali Recovery.

Adv Sci (Weinh)

January 2025

Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe, 6500034, Japan.

Membrane technology holds significant potential for the recovery of acids and alkalis from industrial wastewater systems, with ion exchange membranes (IEMs) playing a crucial role in these applications. However, conventional IEMs are limited to separating only monovalent cations or anions, presenting a significant challenge in achieving concomitant H⁺/OH⁻ permselectivity for simultaneous acid and alkali recovery. To address this issue, the charged microporous polymer framework membranes are developed, featuring rigid Tröger's Base network chains constructed through a facile sol-gel process.

View Article and Find Full Text PDF

Hydrated cable bacteria exhibit protonic conductivity over long distances.

Proc Natl Acad Sci U S A

January 2025

Electronics Sciences and Technology Division, United States Naval Research Laboratory, Washington, DC 20375.

This study presents the direct measurement of proton transport along filamentous , or cable bacteria. Cable bacteria are filamentous multicellular microorganisms that have garnered much interest due to their ability to serve as electrical conduits, transferring electrons over several millimeters. Our results indicate that cable bacteria can also function as protonic conduits because they contain proton wires that transport protons at distances >100 µm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!