Aim of our study was to investigate the effect of the desialylation induced by neuraminidase treatment on low density lipoprotein susceptibility to peroxidative stress induced by incubation with copper ions. Our results show that peroxidative stress induces the formation of aggregates that was not observed in desialylated low density lipoproteins. An increase in thiobarbituric reactive substances and a decrease in polyunsaturated fatty acids content have been shown in oxidized LDL. These modifications were less pronounced in oxidized low density lipoproteins previously treated by neuraminidase. The present data suggest a lower susceptibility to peroxidative stress in previously desialylated low density lipoproteins.
Download full-text PDF |
Source |
---|
Chem Biodivers
January 2025
Qingdao Agricultural University, School of Life Sciences, Qingdao, CHINA.
Three new pyridine derivatives, irpelactedines A-C (1-3), and a new furan derivative, irpelactedine D (5), along with two structurally related known compounds, irpexidine A (4) and 5-carboxy-2-furanpropanoic acid (6), were isolated from the medicinal fungus Irpex lacteus SY1002. Their structures were elucidated through NMR and mass spectral analyses, combined with density functional theory calculations of ECD data. Evaluation of angiotensin-converting enzyme (ACE) inhibitory activity revealed that compounds 1 and 3 displayed moderate inhibition, with IC50 values of 31.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Thessaly, Mechanical Engineering, Leoforos Athinon, Pedion Areos, 383 34, Volos, GREECE.
To accelerate the water dissociation in the Volmer step and alleviate the destruction of bubbles to the physical structure of catalysts during the alkaline hydrogen evolution, an integrated electrode of cobalt oxide and cobalt-molybdenum oxide grown on Ni foam, named CoO-Co2Mo3O8, is designed. This integrated electrode enhances the catalyst-substrate interaction confirmed by a micro-indentation tester, and thus hinders the destruction of the physical structure of catalysts caused by bubbles. Electrochemical testing shows the occurrence of a surface reconstruction of the integrated electrode, and CoO is transformed into Co(OH)2, denoted as Co(OH)2-Co2Mo3O8.
View Article and Find Full Text PDFChemSusChem
January 2025
Harbin University of Science and Technology, School of Electrical and Electronic Engineering, CHINA.
In the pursuit of high-energy-density lithium metal batteries (LMBs), the development of stable solid electrolyte interphase (SEI) is critical to address issues such as lithium dendrite growth and low Coulombic efficiency. Herein, we propose a facile strategy for the in-situ fabrication of a LiCl-rich artificial SEI layer on Li surfaces through reaction of MoCl5 with Li (Li@MoCl5). The resulting artificial SEI significantly enhances the uniformity of Li deposition, effectively suppresses dendrite formation, and improves electrochemical performance.
View Article and Find Full Text PDFLipids
January 2025
Department of Laboratory Medicine, Peoples Hospital of Deyang City, Deyang, China.
Lipid-lowering drugs have been used in clinics widely. It is unclear whether the drugs have an effect on renal failure. We chose high-density lipoprotein cholesterol (ieu-b-109), low-density lipoprotein cholesterol (ieu-a-300), triglyceride (ieu-b-111), and total cholesterol (ebi-a-GCST90038690) as exposures.
View Article and Find Full Text PDFBMC Endocr Disord
January 2025
Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: This study aimed to evaluate the impact of combined levothyroxine (LT4) and triiodothyronine (LT3) therapy on quality of life in patients with primary hypothyroidism.
Methods: In a randomized, double-blind, parallel-group trial, 151 Iranian patients diagnosed with primary hypothyroidism between 2020 and 2021 were enrolled. One group received LT4 alone (n = 80), while the other received LT4 and LT3 (n = 71) for a minimum of six months.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!