Molecular control of neuronal survival in the chick embryo.

EXS

Department of Neurobiochemistry, Max-Planck Institute for Psychiatry, Martinsried, Germany.

Published: August 1994

Neurotrophins are structurally related proteins which promote the survival and differentiation of specific neuronal populations during the development of vertebrate embryos. Like many growth factors, the neurotrophins mediate their actions by binding to membrane proteins that have a ligand-activated tyrosine kinase activity. The interactions of the neurophins with their neuronal receptors have been mostly studied using chick embryonic neurons. These neurons are also extensively used to characterise biological responses to neurotrophins in physiologically relevant systems. We have recently cloned and expressed the chick homologue of trkB (ctrkB), thought to be a receptor for BDNF, and examined by in situ hybridisation the pattern of expression of the ctrkB gene during development of the chick embryo. We found that whereas the sequence of ctrkB shows a high degree of conservation with the mammalian homologues in the intracellular tyrosine kinase domain, the extracellular binding domain is less well conserved. As in mammals, ctrkB mRNAs appear to exist in differentially spliced forms that result in a full length and a truncated receptor lacking the tyrosine kinase domain. These two forms are differentially expressed in neurons and non-neuronal cells respectively. The binding characteristics of ctrkB expressed in a transfected cell line are similar, but not identical to those of the BDNF binding sites on primary chick neurons, specially with regard to the affinity of BDNF.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-0348-7330-7_5DOI Listing

Publication Analysis

Top Keywords

tyrosine kinase
12
chick embryo
8
kinase domain
8
chick
5
ctrkb
5
molecular control
4
control neuronal
4
neuronal survival
4
survival chick
4
embryo neurotrophins
4

Similar Publications

Purpose: MAP2K1/MEK1 mutations are potentially actionable drivers in cancer. MAP2K1 mutations have been functionally classified into three groups according to their dependency on upstream RAS/RAF signaling. However, the clinical efficacy of mitogen-activated protein kinase (MAPK) pathway inhibitors (MAPKi) for MAP2K1-mutant tumors is not well defined.

View Article and Find Full Text PDF

This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.

View Article and Find Full Text PDF

Obesity is a risk factor for asthma morbidity, associated with less responsiveness to inhaled corticosteroids. CD4+ T-cells are central to the immunology of asthma and may contribute to the unique obese asthma phenotype. We sought to characterize the single cell CD4+ Transcriptional profile differences in obese children with asthma compared to normal weight children with asthma.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer, characterized by frequent recurrence, metastasis, and poor survival outcomes despite chemotherapy-based treatments. This study aims to investigate the mechanisms by which Traditional Chinese Medicine (TCM) modulates the tumor immune microenvironment in TNBC, utilizing CiteSpace and bioinformatics analysis.

Methods: We employed CiteSpace to analyze treatment hotspots and key TCM formulations, followed by bioinformatics analysis to identify the main active components, targets, associated pathways, and their clinical implications in TNBC treatment.

View Article and Find Full Text PDF

In this article, we report the first case of a 61-year-old woman who was diagnosed with both nodules and cystic lesions in her lungs. The lung nodules were diagnosed as ALK-positive histiocytosis (APH) carrying an gene fusion, which microscopically displayed a mixed morphology of foamy cells, spindle cells, and Touton's giant cells. Immunohistochemistry showed expression of CD163, CD68, and ALK, while fluorescence hybridization (FISH) with second-generation sequencing (NGS) showed the ALK gene fusion with the FLCN gene variant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!