A 150-kDa DNA-dependent ATPase composed of 83/68-kDa subunits was previously reported to cofractionate with a 21S complex of enzymes for DNA synthesis from HeLa cells (Vishwanatha, J. K., & Baril, E. F. (1990) Biochemistry 29, 8753-8759). The DNA-dependent ATPase was purified to electrophoretic homogeneity from a HeLa cell homogenate by a modified procedure that involves subcellular fractionation, poly(ethylene-glycol) precipitation of the combined nuclear extract/cytosol, and chromatography on Q-Sepharose and native and denatured DNA/celluloses followed by Mono-S fast protein liquid chromatography. The purified enzyme showed equimolar amounts of 83- and 68-kDa polypeptides following polyacrylamide gel electrophoresis under denaturing conditions. Sequence analysis of peptide fragments derived from the separated 83- and 68-kDa polypeptides showed 90-100% homology with the corresponding 80- and 70-kDa subunits of human Ku protein. Immunoblot analysis of the ATPase during the course of its purification and immunoprecipitation with antibodies to the 80- and 70-kDa subunits of human Ku protein confirmed the relationship of the 83- and 68-kDa polypeptides of the human DNA-dependent ATPase to the subunits of human Ku protein. Both the 83- and 68-kDa polypeptides are phosphorylated by a DNA-dependent protein kinase that cofractionates with the ATPase. The DNA-dependent ATPase activity is up regulated by phosphorylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00194a021 | DOI Listing |
Redox Biol
January 2025
University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA. Electronic address:
During its catalytic cycle, the homodimeric ATPase topoisomerase II alpha (TOP2A) cleaves double stranded DNA and remains covalently bound to 5' ends via tyrosine phosphodiester bonds. After passing a second, intact duplex through, TOP2A rejoins the break and releases from the DNA. Thereby, TOP2A can relieve strain accumulated during transcription, replication and chromatin remodeling and disentangle sister chromatids for mitosis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
ClpXP is a two-component mitochondrial matrix protease. The caseinolytic mitochondrial matrix peptidase chaperone subunit X (ClpX) recognizes and translocates protein substrates into the degradation chamber of the caseinolytic protease P (ClpP) for proteolysis. ClpXP degrades damaged respiratory chain proteins and is necessary for cancer cell survival.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892.
Hsp70, Hsp90, and ClpB/Hsp100 are molecular chaperones that help regulate proteostasis. Bacterial and yeast Hsp70s and their cochaperones function synergistically with Hsp90s to reactivate inactive and aggregated proteins by a mechanism that requires a direct interaction between Hsp90 and Hsp70 both in vitro and in vivo. and yeast Hsp70s also collaborate in bichaperone systems with ClpB and Hsp104, respectively, to disaggregate and reactivate aggregated proteins and amyloids such as prions.
View Article and Find Full Text PDFInt J Gynecol Cancer
January 2025
Helsinki University Hospital and University of Helsinki, Department of Obstetrics and Gynecology, Helsinki, Finland; University of Helsinki, Faculty of Medicine, Helsinki University Hospital and Research Program in Applied Tumor Genomics, Department of Pathology, Helsinki, Finland.
Objective: Endometrial carcinomas with mismatch repair deficiency (MMRd) and no specific molecular profile (NSMP) are considered to have intermediate prognoses. However, potential prognostic differences between these molecular subgroups remain unclear due to the lack of standardized control for clinicopathologic factors. This study aims to evaluate outcomes of MMRd and NSMP endometrial carcinomas across guideline-based clinicopathologic risk groups.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea.
Helicase is a nucleic acid motor that catalyses the unwinding of double-stranded (ds) RNA and DNA via ATP hydrolysis. Helicases can act either as a nucleic acid motor that unwinds its ds substrates or as a chaperone that alters the stability of its substrates, but the two activities have not yet been reported to act simultaneously. Here, we used single-molecule techniques to unravel the synergistic coordination of helicase and chaperone activities, and found that the severe acute respiratory syndrome coronavirus helicase (nsp13) is capable of two modes of action: (i) binding of nsp13 in tandem with the fork junction of the substrate mechanically unwinds the substrate by an ATP-driven synchronous power stroke; and (ii) free nsp13, which is not bound to the substrate but complexed with ADP in solution, destabilizes the substrate through collisions between transient binding and unbinding events with unprecedented melting capability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!