Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955867PMC

Publication Analysis

Top Keywords

complement activation
4
activation correlates
4
correlates graft
4
graft damage
4
damage baboon-to-human
4
baboon-to-human liver
4
liver xenotransplantation
4
complement
1
correlates
1
graft
1

Similar Publications

Evaluation of Complement-Dependent Cytotoxicity Assays for Gene-Edited Pig-to-Human Xenotransplantation.

Xenotransplantation

January 2025

Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Background: Gene-edited pigs for xenotransplantation usually contain one or more transgenes encoding human complement regulatory proteins (CRPs). Because of species differences, human CRP(s) expressed in gene-edited pigs may have difficulty inhibiting the activation of exogenous rabbit complement added to a complement-dependent cytotoxicity (CDC) assay. The use of human complement instead of rabbit complement in CDC experiments may more accurately reflect the actual regulatory activity of human CRP(s).

View Article and Find Full Text PDF

Omega-3 fatty acids supplementation from late pregnancy to early lactation attenuates the endocannabinoid system and immune proteome in preovulatory follicles and endometrium of Holstein dairy cows.

J Dairy Sci

January 2025

Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel. Electronic address:

Activation of the endocannabinoid system (ECS) elicits negative effects on the reproductive system in mammals. Omega-3 (n-3) fatty acid (FA) supplementation lowers ECS activation and has anti-inflammatory effects. Thus, we hypothesized that supplementing cows with n-3 FA will downregulate components of the ECS and immune system in preovulatory follicles and in the endometrium.

View Article and Find Full Text PDF

Current hemodialysis treatments can cause adverse effects, many of which are linked to the membranes used in the process. These issues are being addressed through new materials and technologies, making it urgent to establish minimum guidelines for evaluating such membranes. This review proposes standardizing the biological tests and variables to evaluate the performance of new membranes, aiming to replicate hemodialysis conditions closely.

View Article and Find Full Text PDF

Analysis of the effect of ALA-PDT on macrophages in footpad model of mice infected with based on single-cell sequencing.

Open Med (Wars)

January 2025

Department of Dermatology and Venereology, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Road, Guangzhou, China.

Chromoblastomycosis (CBM) is a chronic neglected fungal disease that causes serious damage to the physical and mental health of patients. 5-Aminolevulinic acid photodynamic therapy (ALA-PDT) has garnered significant attention in the recent era for the treatment of CBM and has exhibited promising effects in several clinical case reports. We established a mice footpad infection model with and analyzed the impact of PDT treatment on the immune response of macrophages using single-cell sequencing.

View Article and Find Full Text PDF

Circulating histones have been identified as essential mediators that lead to hyperinflammation, platelet aggregation, coagulation cascade activation, endothelial cell injury, multiple organ dysfunction, and death in severe patients with sepsis, multiple trauma, COVID-19, acute liver failure, and pancreatitis. Clinical evidence suggests that plasma levels of circulating histones are positively associated with disease severity and survival in patients with such critical diseases. However, safe and efficient therapeutic strategies targeting circulating histones are lacking in current clinical practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!