Capillary electrophoresis (CE) conditions have been developed for the separation of hydrophobic polypeptides, such as fatty acid-acylated peptides, and their subsequent structural identification by 252Cf plasma desorption (PDMS) and electrospray mass spectrometry (ESMS). Salt- and detergent-free aqueous acetic acid buffers containing up to 20% 2-propanol or 25% acetonitrile were employed for CE separations of hydrophobic peptides with (i) untreated, and (ii) 3-aminopropyltrimethoxysilane-derived fused silica capillaries. For both capillary types, electroosmotic flow rates suitable for sample isolation and transfer were determined, and CE separations of polypeptide mixtures were compared for aqueous buffers containing 2-propanol or acetonitrile. For the mass spectrometric identification of CE-separated peptides, a sheath flow sample isolation method was developed for subsequent transfer to PDMS. This procedure enabled the efficient isolation of peptide fractions for PDMS analysis, or alternative microanalytical techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.1150150139DOI Listing

Publication Analysis

Top Keywords

capillary electrophoresis
8
252cf plasma
8
plasma desorption
8
electrospray mass
8
mass spectrometry
8
hydrophobic polypeptides
8
sample isolation
8
electrophoresis combined
4
combined 252cf
4
desorption electrospray
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!