Flow cytometry data (time of flight, horizontal and vertical forward light scatter, 90 degrees light scatter, and "red" and "orange" integral fluorescence) were collected for laboratory cultures of 40 species of marine phytoplankton, from the following taxonomic classes, the Dinophyceae, Bacillariophyceae, Prymnesiophyceae, Cryptophyceae, and other flagellates. Single-hidden-layer "back-propagation" neural networks were trained to discriminate between species by recognising patterns in their flow cytometric signatures, and network performance was assessed using an independent test data set. Two approaches were adopted employing: (1) a hierarchy of small networks, the first identifying to which major taxonomic group a cell belonged, and then a network for that taxonomic group identified to species, and (2) a single large network. Discriminating some of the major taxonomic groups was successful but others less so. With networks for specific groups, cryptophyte species were all identified reliably (probability of correct classification always being > 0.75); in the other groups half of the species were identified reliably. With the large network, dinoflagellates, cryptomonads, and flagellates were identified almost as well as by networks specific for these groups. The application of neural computing techniques to identification of such a large number of species represents a significant advance from earlier studies, although further development is required.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.990150403DOI Listing

Publication Analysis

Top Keywords

flow cytometric
8
marine phytoplankton
8
light scatter
8
major taxonomic
8
taxonomic group
8
large network
8
networks specific
8
specific groups
8
species identified
8
identified reliably
8

Similar Publications

Purpose: Graves' ophthalmopathy (GO), the most common extrathyroidal manifestation of Graves' disease, is disabling and disfiguring. Recent studies have shown that statins have a protective effect on individuals with GO. Statins were reported to trigger ferroptosis in some disorders, but little is known about whether statins protect against GO via ferroptosis.

View Article and Find Full Text PDF

The Anti-Human P2X7 Monoclonal Antibody (Clone L4) Can Mediate Complement-Dependent Cytotoxicity of Human Leukocytes.

Eur J Immunol

January 2025

Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.

P2X7 is an extracellular adenosine 5'-triphosphate (ATP)-gated cation channel that plays various roles in inflammation and immunity. P2X7 is present on peripheral blood monocytes, dendritic cells (DCs), and innate and adaptive lymphocytes. The anti-human P2X7 monoclonal antibody (mAb; clone L4), used for immunolabelling P2X7 or blocking P2X7 activity, is a murine IgG2 antibody, but its ability to mediate complement-dependent cytotoxicity (CDC) is unknown.

View Article and Find Full Text PDF

Acute lymphoblastic leukaemia is the most common childhood malignancy that remains a leading cause of death in childhood. It may be characterised by multiple known recurrent genetic aberrations that inform prognosis, the most common being hyperdiploidy and t(12;21) . We aimed to assess the applicability of a new imaging flow cytometry methodology that incorporates cell morphology, immunophenotype, and fluorescence in situ hybridisation (FISH) to identify aneuploidy of chromosomes 4 and 21 and the translocation .

View Article and Find Full Text PDF

Background: Maintenance immunosuppression is required for suppression of alloimmunity or allograft rejection. However, continuous use of immunosuppressants may lead to various side effects, necessitating the use of alternative immunosuppressive drugs. The early secreted antigenic target of 6 kDa (ESAT-6) is a virulence factor and immunoregulatory protein of mycobacterium tuberculosis (Mtb), which alters host immunity through dually regulating development or activation of various immune cells.

View Article and Find Full Text PDF

Isolation, culture, and characterization of primary endothelial cells and pericytes from mouse sciatic nerve.

J Neurosci Methods

January 2025

National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, 22332, Republic of Korea. Electronic address:

Background: The recovery of injured peripheral nerves relies on angiogenesis, where newly formed blood vessels act as pathways guiding Schwann cells across the wound to support axon regeneration. While some research has examined this process, the specific mechanisms of angiogenesis in peripheral nerve healing remain unclear. In vitro models are vital tools to investigate these mechanisms; however, no current in vitro culture methods exist for isolating vascular cells, such as endothelial cells (ECs) and pericytes, specifically from sciatic nerves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!