Anucleate primary sterigmata (aps) mutants of Aspergillus nidulans are partially blocked in conidiation (asexual sporulation) due to failure of the organized migration of nuclei into the conidiophore metulae. The mutants also have a slightly reduced hyphal growth rate and irregular distribution of nuclei in vegetative hyphae; the hyphal phenotype appears somewhat more variable than the conidiation defect. The mutants fall into two complementation groups, apsA and apsB, mapping on chromosomes IV and VI, respectively. apsB mutants are also partially defective in sexual reproduction.

Download full-text PDF

Source
http://dx.doi.org/10.1099/13500872-140-5-1169DOI Listing

Publication Analysis

Top Keywords

mutants aspergillus
8
aspergillus nidulans
8
hyphal growth
8
mutants
5
nidulans deficient
4
deficient nuclear
4
nuclear migration
4
migration hyphal
4
growth conidiation
4
conidiation anucleate
4

Similar Publications

[Improvement of catalytic activity and thermostability of glucose oxidase from ].

Sheng Wu Gong Cheng Xue Bao

January 2025

Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Glucose oxidase (GOD) is an oxygen-consuming dehydrogenase that can catalyze the production of gluconic acid hydrogen peroxide from glucose, and its specific mechanism of action makes it promising for applications, while the low catalytic activity and poor thermostability have become the main factors limiting the industrial application of this enzyme. In this study, we used the glucose oxidase GOD reported with the best thermostability as the source sequence for phylogenetic analysis to obtain the GOD with excellent performance. Six genes were screened and successfully synthesized for functional validation.

View Article and Find Full Text PDF

is considered one of the main fungi responsible for black and sour rot in grapes, as well as the production of the carcinogenic mycotoxin ochratoxin A. The global regulatory methyltransferase protein controls the production of various secondary metabolites in species, as well as influences sexual and asexual reproduction and morphology. The goal of this study was to investigate the role of the regulatory gene in physiology, virulence, and ochratoxin A (OTA) production by deleting this gene from the genome of a wild-type strain.

View Article and Find Full Text PDF

SidF, a dual substrate N5-acetyl-N5-hydroxy-L-ornithine transacetylase involved in siderophore biosynthesis.

J Struct Biol X

June 2025

Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl) Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 1, 39100 Bolzano, Italy.

Siderophore-mediated iron acquisition is essential for the virulence of , a fungus causing life-threatening aspergillosis. Drugs targeting the siderophore biosynthetic pathway could help improve disease management. The transacetylases SidF and SidL generate intermediates for different siderophores in .

View Article and Find Full Text PDF

The expression system has been developed into a chassis for the production of heterologous lipases, attributed to its strong capabilities in protein production and secretion, robust post-translational modifications, and favourable safety profile. However, the system's relatively low expression levels remain a challenge, hindering its ability to meet the increasing demands of large-scale production. Strain C19, screened by high-throughput methods combining droplet microfluidics and flow cytometry, was demonstrated to be a potential chassis cell based on fermentation kinetic analysis and transcriptome sequencing.

View Article and Find Full Text PDF

The Translation Initiation Factor eIF2Bα Regulates Development, Stress Response, Amylase Production, and Kojic Acid Synthesis in the Fungus Aspergillus oryzae.

Curr Microbiol

January 2025

Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China.

Translation initiation, which involves numerous protein factors and coordinated control steps, represents the most complicated process during eukaryotic translation. However, the roles of eukaryotic translation initiation factor (eIF) in filamentous fungi are not well clarified. In this study, we investigated the function of eIF2Bα in Aspergillus oryzae, an industrially important filamentous fungus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!