Fast- and slow-reacting subjects exhibit different patterns of gamma-band electroencephalogram (EEG) activity when responding as quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects produce speeded reactions in different ways and demonstrates that analysis of event-related changes in the amplitude of EEG activity recorded from the human scalp can reveal information about event-related brain processes unavailable using event-related potential measures. Time-varying spectral power in a selected (35- to 43-Hz) gamma frequency band was averaged across trials in two experimental conditions: passive listening and speeded reacting to binaural clicks, forming 40-Hz event-related spectral responses. Factor analysis of between-subject event-related spectral response differences split subjects into two near-equal groups composed of faster- and slower-reacting subjects. In faster-reacting subjects, 40-Hz power peaked near 200 ms and 400 ms poststimulus in the react condition, whereas in slower-reacting subjects, 40-Hz power just before stimulus delivery was larger in the react condition. These group differences were preserved in separate averages of relatively long and short reaction-time epochs for each group. gamma-band (20-60 Hz)-filtered event-related potential response averages did not differ between the two groups or conditions. Because of this and because gamma-band power in the auditory event-related potential is small compared with the EEG, the observed event-related spectral response features must represent gamma-band EEG activity reliably induced by, but not phase-locked to, experimental stimuli or events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC44197 | PMC |
http://dx.doi.org/10.1073/pnas.91.14.6339 | DOI Listing |
J Biol Chem
September 2024
Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA. Electronic address:
Fapy•dG (N6-(2-deoxy-α,β-D-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine) and 8-OxodGuo (8-oxo-7,8-dihydro-2'-deoxyguanosine) are major products of 2'-deoxyguanosine oxidation. Fapy•dG is unusual in that it exists as a dynamic mixture of anomers. Much less is known about the effects of Fapy•dG than 8-OxodGuo on transcriptional bypass.
View Article and Find Full Text PDFPolymers (Basel)
April 2024
Fakultät für Naturwissenschaften, Institut für Elektrochemie, Universität Ulm, 89081 Ulm, Germany.
Monitoring of molding processes is one of the most challenging future tasks in polymer processing. In this work, the in situ monitoring of the curing behavior of highly filled EMCs (silica filler content ranging from 73 to 83 wt%) and the effect of filler load on curing kinetics are investigated. Kinetic modelling using the Friedman approach was applied using real-time process data obtained from in situ DEA measurements, and these online kinetic models were compared with curing analysis data obtained from offline DSC measurements.
View Article and Find Full Text PDFSensors (Basel)
September 2022
Department of Electrical/Electronic Engineering, Ariel University, Ariel 40700, Israel.
The increasingly widespread occurrences of fast-changing loads, as in, for example, the charging of electrical vehicles and the stochastic output of PV generating facilities, are causing imbalances between generated and consumed power flows. The deviations in voltage cause noteworthy technical problems. The tap-changers in today's transformers are slow-reacting and thus cannot effectively correct the imbalance.
View Article and Find Full Text PDFJ Phys Chem A
August 2022
Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States.
Chemical transformations in aerosols impact the lifetime of particle phase species, the fate of atmospheric pollutants, and both climate- and health-relevant aerosol properties. Timescales for multiphase reactions of ozone in atmospheric aqueous phases are governed by coupled kinetic processes between the gas phase, the particle interface, and its bulk, which respond dynamically to reactive consumption of O. However, models of atmospheric aerosol reactivity often do not account for the coupled nature of multiphase processes.
View Article and Find Full Text PDFSci Total Environ
November 2021
Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden.
Ozonation is an established technique used to reduce the discharge of organic micropollutants into the aquatic environment, but the possibility of predicting the ozone demand for different wastewater matrices is still limited, especially in the presence of suspended solids (SS). A new tool for the prediction of the removal of organic micropollutants with ozone, based on dissolved and particulate matter in activated sludge effluents, was therefore developed. The removal of 25 organic micropollutants was determined on laboratory scale in the presence and absence of suspended solids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!