A mouse monoclonal antibody against boar acrosin and antiserum prepared to highly purified acrosin in female rabbits were used to detect the antigen in various fluids and tissues of boars using an indirect immunofluorescence technique. A strong reaction was found in fluid and epithelial tissue of the seminal vesicles as well as in the germinal cells in the testis. No immunoreactivity was detected in tissues of the epididymides and other organs of the boar. The antigens present in seminal vesicle fluid of boars were partially purified by column chromatography. It was demonstrated that two antigens differing in molecular mass were present and both possessed protease and amidase activity. The higher molecular mass antigen eluted from a gel filtration column in a volume identical to that of proacrosin. The same result was obtained in polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS-PAGE). The low molecular mass antigen was eluted from Sephadex G-75 column together with natural protease inhibitors corresponding in molecular mass to less than 20 kDa. The mobility of the antigen in SDS-PAGE was greater than that of chymotrypsin. It is assumed that the protease from seminal vesicle epithelial resembled acrosin in structure and function. Acrosin may therefore not be specific for spermatozoa.

Download full-text PDF

Source
http://dx.doi.org/10.1530/jrf.0.1000461DOI Listing

Publication Analysis

Top Keywords

molecular mass
16
seminal vesicles
8
seminal vesicle
8
mass antigen
8
antigen eluted
8
acrosin
5
serine protease
4
protease activity
4
activity boar
4
seminal
4

Similar Publications

Comprehensive genomic and transcriptomic analyses of the anaerobic degradation of microcystin in Alcaligenes faecalis D04.

Ecotoxicol Environ Saf

January 2025

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China. Electronic address:

Microcystin LR (MC-LR) pollution is a serious threat to aquatic ecosystems and public health in China and is an environmental problem that urgently needs to be solved. However, few studies have investigated the anaerobic degradation pathway and related molecular biological mechanisms of MC-LR. In this study, a bacterium capable of degrading MC-LR with a degradation efficiency of 0.

View Article and Find Full Text PDF

Although cathepsin S is transported from the spleen to the liver, where it cleaves collagen XVIII to produce endostatin and plays a critical role in the onset of early liver fibrosis, the relationship between liver fibrosis and spleen function remains underexplored. Given the roles of phosphorylation in disease, understanding its regulatory mechanism in early liver fibrosis is crucial. Despite advances in mass spectrometry enhancing phosphoproteomics, its application is limited by small clinical samples and subtle protein changes.

View Article and Find Full Text PDF

Nanomaterials that engage in well-defined and tunable interactions with proteins are pivotal for the development of advanced applications. Achieving a precise molecular-level understanding of nano-bio interactions is essential for establishing these interactions. However, such an understanding remains challenging and elusive.

View Article and Find Full Text PDF

Background: Geraniol 10-hydroxylase (G10H) is a cytochrome P450 monooxygenase involved in regulation, which is involved in the biosynthesis of monoterpene. However, G10H is not characterized at the enzymatic mechanism and regulatory function in .

Methods And Results: A gene related to the biosynthesis of monoterpenoid, geraniol 10-hydroxylase, has been cloned from the medicinal plant .

View Article and Find Full Text PDF

Although electrostatic catalysis can enhance the kinetics and selectivity of reactions to produce greener synthetic processes, the highly directional nature of electrostatic interactions has limited widespread application. In this study, the influence of oriented electric fields (OEF) on radical addition and atom abstraction reactions are systematically explored with ion-trap mass spectrometry using structurally diverse distonic radical ions that maintain spatially separated charge and radical moieties. When installed on rigid molecular scaffolds, charged functional groups lock the magnitude and orientation of the internal electric field with respect to the radical site, creating an OEF which tunes the reactivity across the set of gas-phase carbon-centred radical reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!