Electrophysiological data suggest that an abnormal oscillatory pattern of discharge in cortical and thalamic neurons may be the major mechanism underlying primary generalised epilepsy. No neurochemical or anatomical substrate for this theory has hitherto been demonstrated in humans and the pathophysiology of primary generalised epilepsy remains unknown. By means of PET and the benzodiazepine (BZ) ligand [11C]flumazenil it has been previously shown that the BZ receptor density is reduced in the epileptic foci of patients with partial epilepsy. In the present study the method was further developed and used in a comparative analysis of cortical, cerebellar, and subcortical BZ receptor binding in patients with primary generalised tonic and clonic seizures (n = 8), and healthy controls (n = 8). Patients with generalised seizures had an increased BZ receptor density in the cerebellar nuclei (p = 0.006) and decreased density in the thalamus (p = 0.003). No significant changes were seen in the cerebral and cerebellar cortex or in the basal ganglia. The observed alterations suggest that the gamma-amino-butyric acid (GABA)-BZ system may be affected in the cerebello-thalamocortical loop of patients with generalised epilepsy and indicate possible targets for selective pharmacological treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1073018 | PMC |
http://dx.doi.org/10.1136/jnnp.57.7.797 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!