Metabolites of entacapone, (E)-2-cyano-N,N-diethyl-3-(3,4-dihydroxy-5-nitrophenyl) propenamide, a potent inhibitor of catechol-O-methyltransferase, were isolated from dog urine. After hydrolysis of glucuronides and sulfates, 5 metabolites were identified in addition to unchanged entacapone by HPLC with diode-array UV detection, electron ionization mass spectrometry and IR spectroscopy. The (Z)-isomer of entacapone was the most abundant phase I metabolite while less abundant metabolites were formed through cleavage or reduction of the side chain carbon-carbon double bond, hydrolysis of the amide bond or through hydration of the nitrile group. The most abundant urinary metabolites were glucuronides. The glucuronidation site of these ortho-nitrocatechols was shown to be the hydroxyl meta to the nitro group.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF03190186DOI Listing

Publication Analysis

Top Keywords

urinary metabolites
8
metabolites
5
identification major
4
major urinary
4
metabolites catechol-o-methyltransferase
4
catechol-o-methyltransferase inhibitor
4
entacapone
4
inhibitor entacapone
4
entacapone dog
4
dog metabolites
4

Similar Publications

Monitoring of p-nitrophenol (PNP) and 3-methyl-4-nitrophenol (PNMC) in human urine and environmental water is of great importance for human health assessment and environmental protection, as they are both urinary metabolites of some poisonous pesticides and priority environmental pollutants. However, efficient extraction of trace levels of PNP and PNMC from complex matrices remains challenging. This study presented the synthesis of histidine-modified ZIF-90 on natural eggshell membrane (ESM@His-ZIF-90) via a facile one-step in-situ growth strategy, and its application as an adsorbent for dispersive membrane extraction (DME) of PNP and PNMC in human urine and environmental water.

View Article and Find Full Text PDF

Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.

View Article and Find Full Text PDF

Glyphosate, a widely used herbicide globally, has prompted concerns regarding its potential health impacts. This study aimed to explore the link between glyphosate exposure and renal function by combining NHANES, a zebrafish model, and metabolomics. A cross-sectional analysis of 2013-2014 NHANES data investigated the relationship between glyphosate exposure and renal function [albumin-to-creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR)].

View Article and Find Full Text PDF

The members of the genus Mill. are notable for producing a diverse range of structurally intricate secondary metabolites, being the focus of current phytochemical research. Their importance is recognized as several species hold significant ethnopharmacological value, being traditionally used to address ailments in human systems, such as respiratory, gastrointestinal, and urinary conditions, among others.

View Article and Find Full Text PDF

Background/objectives: Chronic gut dysbiosis due to a high-fat diet (HFD) instigates cardiac remodeling and heart failure with preserved ejection fraction (HFpEF), in particular, kidney/volume-dependent HFpEF. Studies report that although mitochondrial ATP citrate lyase (ACLY) supports cardiac function, it decreases more in human HFpEF than HFrEF. Interestingly, ACLY synthesizes lipids and creates hyperlipidemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!