[Free radicals, oxidative stress and antioxidant vitamins].

C R Seances Soc Biol Fil

Département de Recherches Biomédicales sur l'Alcoolisme, Biomédicale des Saints-Pères, Paris.

Published: August 1994

Free radicals having oxidizing properties are produced in vivo. The monoelectronic reduction of dioxygen generates the superoxide radical (.O2-) which, according to the experimental conditions, behaves as a reducing or an oxidizing agent. Its dismutation catalyzed by superoxide dismutases (SODs) produces hydrogen peroxide. The latter reacting with .O2- in the presence of "redox-active" iron produces highly aggressive prooxidant radicals, such as the hydroxyl radical (.OH). This production is prevented through intracellular enzymes (catalase and glutathione peroxidases) which destroy the hydrogen peroxide involved in the biosynthesis of .OH. An increase in SODs activity without parallel enhancement of the enzymes destroying H2O2 may lead to important cellular disturbances. Other enzymes acting with glutathione as substrate (especially glutathione S-transferases) contribute to the antioxidant defence. The same holds true for selenium and zinc which act mainly through their involvement in the structure of both antioxidant enzymes and nonenzymatic proteins. Another line of antioxidant defence is represented by substrates acting as chain-breaking antioxidants in destructive processes linked to prooxidant free radicals, such as lipid peroxidation. The main membranous antioxidant is alpha-tocopherol which is able to quench efficiently lipid peroxyl radicals. Its efficiency would be quickly exhausted if the tocopheryl radical formed during this reaction wouldn't be retransformed into alpha-tocopherol through the intervention of ascorbate and/or glutathione. Ubiquinol and dihydrolipoate also contribute to the membranous antioxidant defence, whereas carotenoids are mainly responsible for the prevention of the deleterious effects of singlet oxygen. An oxidative stress is apparent when the antioxidant defence is insufficient to cope with the prooxidant production.

Download full-text PDF

Source

Publication Analysis

Top Keywords

antioxidant defence
16
oxidative stress
8
free radicals
8
hydrogen peroxide
8
membranous antioxidant
8
antioxidant
7
[free radicals
4
radicals oxidative
4
stress antioxidant
4
antioxidant vitamins]
4

Similar Publications

Enhancing Diabetic Oral Wound Healing with miR-132 Delivered Through Tetrahedral DNA Nanostructures.

Small

January 2025

Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China.

Oral mucosal injuries are commonly caused by factors such as trauma, infection, or inflammation, especially in diabetic patients where healing is difficult and significantly affects quality of life. In this study, a nanocarrier system based on DNA tetrahedrons (TDN) is developed, which serve as ideal vectors due to their excellent intracellular uptake and drug delivery capabilities. By efficiently delivering miR132 into cells, the proliferation and migration of human oral mucosal fibroblasts (HOMFs) and human umbilical vein endothelial cells (HUVECs) are regulated, along with the modulation of inflammation and antioxidant processes.

View Article and Find Full Text PDF

Curcumin: A Potential Detoxifier Against Chemical and Natural Toxicants.

Phytother Res

January 2025

Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei.

The human body gets exposed to a variety of toxins intentionally or unintentionally on a regular basis from sources such as air, water, food, and soil. Certain toxins can be synthetic, while some are biological. The toxins affect the various parts of the body by activating numerous pro-inflammatory markers, like oxidative stresses, that tend to disturb the normal function of the organs ultimately.

View Article and Find Full Text PDF

A triad of enzymatic antioxidants viz., catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) constitutes a first line of defence against any redox imbalances in the semen. Cryopreservation enabling long term storage of semen also prompts generation of surplus reactive oxygen species (ROS) in the cells with waned antioxidants, hampering the full exploitation of this process.

View Article and Find Full Text PDF

The Puna region is distinguished by its extreme environmental conditions and highly valuable mining resources. However, the unregulated management of mine tailings poses a significant threat to the ecological integrity of this region. This study assesses the environmental impacts of mine tailings at La Concordia mine (Salta province, Argentina) and examines the physiological and biochemical adaptations of Parastrephia quadrangularis (Meyen) Cabrera that enable its survival under this extreme conditions.

View Article and Find Full Text PDF

Bacopa monnieri Extract Diminish Hypoxia-Induced Anxiety by Regulating HIF-1α Signaling and Enhancing the Antioxidant Defense System in Hippocampus.

Neuromolecular Med

January 2025

Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.

Hypoxia is a significant stressor, and stabilized hypoxia-inducible factor-1α (HIF-1α) regulates the expression of numerous genes, leading to various biochemical, molecular, physiological and genomic changes. The body's oxygen-sensing system activates gene expression to protect brain tissues from hypoxia. Gamma-aminobutyric acid, an inhibitory neurotransmitter, regulates brain excitability during hypoxia through the activation of HIF-1 α.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!