The synthesis and labelling of a new bis-amide-oxime ligand E,E-2,9-bis(hydroxyimino)-4,7-diaza 5,6-dioxodecane (AdO) with 99mTc has been achieved. Protein binding, partition coefficient and tissue distribution of this complex and two related bis-amine-oxime ligands is reported. The biodistribution of the complexes are disappointing with only limited brain and myocardial uptake. Structures for the complex are postulated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0969-8043(94)90201-1 | DOI Listing |
Molecules
December 2024
M. V. Lomonosov Institute of Fine Chemical Technology, MIREA-Russian Technological University, 86 Vernadsky Av., 119571 Moscow, Russia.
The use of radiopharmaceuticals for diagnostics in oncology allows for the detection of the disease at an early stage. Among diagnostic radionuclides, Tc is a promising isotope that has been used to create several drugs for clinical use. One of the most effective Tc chelators is 6-hydrazinylnicotinic acid (HYNIC), which, when combined with various vector molecules, can be used for targeted delivery of radionuclides to tumor tissues.
View Article and Find Full Text PDFMol Pharm
January 2025
Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
As an enzyme that plays an important role in DNA repair, poly(ADP-ribose) polymerase-1 (PARP-1) has become a popular target for cancer therapy. Nuclear medicine molecular imaging technology, supplemented by radiolabeled PARP-1 inhibitors, can accurately determine the expression level of PARP-1 at lesion sites to help patients choose an appropriate treatment plan. In this work, niraparib was modified with a hydrazinonicotinamide (HYNIC) group to generate the ligand NPBHYNIC, which has an affinity (IC) of 450.
View Article and Find Full Text PDF[This corrects the article DOI: 10.3389/fchem.2023.
View Article and Find Full Text PDFData Brief
February 2025
Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo 111421, Paraguay.
This article presents 582 bone scan images from 291 adult patients who attended the Nuclear Medicine Service at the Instituto de Investigaciones en Ciencias de la Salud (IICS) of the Universidad Nacional de Asunción (UNA), Paraguay, between 2020 and 2024. The images were acquired using trimodal SPECT-CT-PET equipment, model AnyScan SCP, and the MEDISO brand. Approximately 20 mCi of technetium-99m methylene diphosphonate (Tc-MDP) was administered to each patient, producing whole-body planar images in anterior and posterior projections of the axial and appendicular skeleton with a resolution of 256 × 1024 pixels.
View Article and Find Full Text PDFBioorg Med Chem
January 2025
Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:
Technetium-99m (Tc-99m) is the most employed radionuclide in nuclear imaging diagnostics worldwide for many diseases. The ideal physiochemical properties of Tc-99m (such as half-life and pure gamma energy) make it favorable for Single Photon Emission Computed Tomography (SPECT). In this study, we aim to expand the utilization of Tc-99m radiopharmaceutical toward prostate cancer diagnostics which is currently no FDA approved products and has been intensively examined for a potential candidate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!